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Abstract

City governments face a trade-off in managing curb space: providing parking to facilitate
access to consumption amenities and generate revenue, versus allocating it to alternative land
uses. In this paper, we quantify the welfare implications of curbside parking and evaluate alter-
native policies for managing curb space through parking instruments. We develop a structural
model of drivers’ joint destination and parking decisions: drivers choose which destination to
visit under imperfect information about parking availability, then decide where to park near
the chosen destination. We estimate the model using high-frequency data on metered parking
transactions and GPS data on visits to points of interest in San Francisco, one of the few cities
that have implemented demand-based pricing for curbside parking. We find that, while drivers
value curbside parking, the present discounted value of parking revenue and driver surplus
generally falls short of local assessed land values, which proxy for the economic value of land
uses. Compared to a revenue-maximizing uniform pricing scheme, San Francisco’s demand-
based pricing generates about 30% more revenue while reducing cruising trips by nearly 70%.
Our counterfactuals show that reducing parking supply by roughly 6% and lowering the status
quo demand-based prices by $1.25 citywide preserves parking welfare, with only a modest
revenue loss, while freeing curb space for other uses.
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1 Introduction

Urban transportation plays a critical role in supporting economic activity, especially through
improving traffic externalities and expanding market access to destinations (Redding and Turner,
2015). While recent empirical work has made progress in quantifying the economic impacts of
transportation systems, 1 it has been focused on the movement of people and goods and paid less
attention to parking infrastructure, which complements these moving transportation systems. In
the United States, curbside parking, parking that occupies street curb space, accounts for a sub-
stantial share of the parking infrastructure. For example, in New York City, street parking occupies
nearly 14 square miles, about the area of 13 Central Parks (Grabar, 2024). On the one hand, curb-
side parking helps expand market access to urban amenities through convenient vehicle storage
and generates public revenue. On the other hand, mismanagement of curbside parking can lead
to inefficient use of urban land. When underpriced, curbside parking also contributes to traffic
externalities such as congestion and emissions, as many drivers have to cruise to look for parking.
These traffic externalities can intensify residents’ opposition to new housing and commercial con-
structions (Kashner and Ross, 2025), highlighting the broader implications of parking policies for
urban development.

In this paper, we quantify the welfare effects of curbside parking, measured by the sum of
city revenue and driver surplus minus time costs of cruising, and evaluate alternative policies for
managing curb space through parking instruments. Our analysis focuses on metered parking in
San Francisco, the first U.S. city to adopt citywide demand-based parking pricing.2 Demand-
based pricing sets meter rates by time and location in response to past demand, mitigating excess
demand in some parking blocks. We begin by describing the empirical setting and presenting sum-
mary statistics on the composition of urban amenities (e.g., restaurants, shops) in San Francisco,
travel patterns in the city, and its parking conditions. Motivated by the descriptives, we develop
and estimate a structural model of drivers’ joint decisions of where to go and where to park, incor-
porating how parking considerations factor into travel decisions. San Francisco’s demand-based
parking pricing creates a feedback mechanism: prices affect parking availability, availability influ-
ences destination choices, and these choices shape parking demand, which in turn feeds back into
prices. Our model disentangles these interactions to estimate drivers’ preferences for parking and
the extent to which parking considerations affect their travel choices. Using the framework, we
quantify drivers’ value of consumption amenities and parking, and provide a measure of the wel-

1For example, Durrmeyer and Martínez (2024), Cook and Li (2025), and Cook et al. (2025) study how congestion
pricing and tolling policies mitigate traffic externalities; Tsivanidis (2023) examines how public transit improvements
expand commuter market access and increase social surplus; Almagro et al. (2024) evaluates alternative urban trans-
portation policies and their welfare and distributional implications.

2Demand-based parking pricing is considered one of the most significant reforms in parking policies (Pierce et al.,
2015).

1



fare of curbside parking. Finally, we compare the effects of alternative curbside parking policies,
such as price adjustments and parking supply reductions, to evaluate their trade-offs.

We combine multiple data sources to link drivers’ destinations with parking choices: GPS
mobile-device visit data from Veraset, and San Francisco administrative data, including parking
inventory records, high-frequency meter transactions, travel surveys, and records on street char-
acteristics and restrictions. From the GPS data, we observe drivers’ home Census block group,
points of interest (POIs) that they visit, and the timestamps of those visits.3 From the administra-
tive data, we obtain information on the availability and hourly prices of each parking block near
a destination, as well as other street characteristics that influence parking preferences.4 Although
we do not directly observe who parks at each block, we recover drivers’ relevant parking choice
sets using the geolocation of destinations and parking blocks. We augment these geolocations with
assumptions about the radius around a destination where drivers look for parking, consistent with
the urban planning literature on parking (Millard-Ball et al., 2020; Weinberger et al., 2020). Our
primary sample covers the universe of San Francisco metered parking transactions in June 2019, as
well as visits to San Francisco by Bay Area drivers. In our analysis, we focus on visits and parking
activities in the city’s commercial areas, a region containing roughly 60% of San Francisco’s POIs
and metered parking spaces despite occupying only 20% of the city’s land area.

We begin by showing key patterns in travel and parking in San Francisco. About half of all
visits to consumption amenities in the city by Bay Area residents are made by private car. Un-
like commuters who often have reserved workplace parking, visitors to these destinations rely on
curbside spaces or commercial lots. In San Francisco’s commercial areas, where curb spaces are
usually restricted and off-street parking is costly and sparse, fewer than 2% of establishments pro-
vide on-site parking, making metered parking particularly salient for drivers to these areas. We
document rich variation in meter rates and availability across times of day and adjacent locations,
with blocks charging more than $6/hour located next to blocks priced at $1–2, suggesting strong
heterogeneity of parking choices. On average, most blocks have high parking availability thanks
to demand-based pricing. Nonetheless, at peak parking times (12 pm to 3 pm), up to 5% of all
metered blocks in the city have almost no available parking spots during a three-hour period. The
observed variation in parking conditions allows us to estimate drivers’ elasticities with respect to
different parking attributes, which is generally difficult in settings with uniform parking prices.
Finally, we find that the present discounted value (PDV) of parking revenue captures only a small
fraction of local assessed land values, which proxy for the economic value of alternative land uses.
On average, the PDV of a block’s parking revenue is about $400,000, and the ratio of this PDV
to the underlying land value is roughly 20%. This evidence suggests that current metered parking

3A POI is a well-defined establishment, such as a restaurant or a supermarket.
4A parking block is the street segment between a pair of opposing blockfaces (see Figure A.1).
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generates modest monetary returns relative to the value of the land it occupies. This comparison,
however, reflects only the revenue side of parking’s economic return, omitting the surplus drivers
derive from using these spaces.

To quantify the value drivers derive from curbside parking within their travel decisions and
to evaluate how they would respond to counterfactual policies, we develop a structural model of
drivers’ joint destination and parking choices. In the first stage, each driver chooses a destination
within San Francisco’s commercial areas to visit. This decision depends on destination charac-
teristics and expectations about parking outcomes once they arrive. In the second stage, drivers
choose where to park based on parking locations’ characteristics (e.g., hourly prices, proximity
to destination, steep terrain) and under imperfect information about parking availability.5 Upon
arrival at the preferred metered parking block, if it has no open spot, the driver is assumed to resort
to parking at an outside option (i.e., off-street garage). This redirection of parking due to metered
parking unavailability is interpreted as cruising in our framework. The two-stage travel decision is
represented by a nested logit model. We close the model by specifying how drivers form rational
expectations about parking availability at each metered block. We build on the Erlang B queuing
formula (Erlang, 1909) to link the likelihood of finding an open parking space to expected parking
demand and supply: as more drivers attempt to park at a block with a fixed number of spaces, the
block’s availability declines.

We follow Train (2009) and Azar et al. (2022) and estimate the nested logit model sequentially.
We first treat destination choices as fixed and estimate drivers’ preferences for parking to obtain
each destination’s inclusive value of parking. We then estimate destination choices given these val-
ues and quantify the role of parking in drivers’ travel decisions. We address two sources of endo-
geneity. In the lower-level parking choice, meter rates and expected availability may be correlated
with unobserved parking quality, such as safety and convenience. We instrument for prices and
availability using a combination of BLP-style instruments based on nearby parking characteristics
and data on temporary non-metered parking closures (e.g., for street cleaning). In the upper-level
destination choice, the value of nearby parking may be correlated with unobserved destination
preferences, as popular destinations tend to have more crowded parking. We address this by using
moderately distant parking disruptions from special events, such as festivals or parades, in the city.
When a special event takes place near but not immediately adjacent to a destination, it does not di-
rectly impact foot traffic to that destination. However, the event can create temporary local parking
congestion, and if the distance between the event and the destination’s relevant parking locations is
moderate, this adverse parking condition can spill over to parking near the destination, reducing its
availability and, in turn, influencing drivers’ destination choices through parking considerations.

5This is consistent with parking fees and availability predictions publicly available on the website of the San Fran-
cisco Municipal Transportation Agency and through parking apps, such as PayByPhone, SpotAngels, and Parknav.
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We find that drivers are responsive to both prices and expected availability of parking, suggest-
ing that pricing is an effective tool in managing parking demand. At the destination level, drivers
are most sensitive to proximity to their home, but their consideration of expected parking outcomes
ranks second, more salient than preferences for other destination attributes such as the composition
of establishments. This is consistent with parking being a subsequent yet significant component of
the travel decision. From these estimated preferences, we quantify driver surplus for each metered
parking block. Building on the earlier comparison of the PDV of meter revenue to underlying land
value, we now incorporate driver surplus into the analysis. When accounting for driver surplus, we
find that while most blocks’ parking surplus, the sum of revenue and driver surplus, remains below
land value, about 5.5% exceed it, with some exceeding by a large margin. On average, the PDV of
parking surplus amounts to roughly 40% of underlying land value. This suggests substantial spa-
tial heterogeneity in curbside parking surplus and that drivers can derive considerable surplus from
metered parking. These findings underscore the importance of designing flexible, location-specific
parking policies, consistent with the mechanism underlying demand-based pricing.

Finally, we conduct two sets of counterfactual exercises to quantify the role of demand-based
pricing in managing curbside parking and to evaluate alternative policy designs. First, we compare
the status quo demand-based pricing with a revenue-maximizing uniform pricing scheme. The
status quo generates nearly 30% more revenue than the uniform scheme while reducing cruising
trips by roughly 69%, saving drivers more than $500,000 in time costs each month. Second, we find
that San Francisco could reduce its parking supply by roughly 6% and still achieve the same total
welfare, defined as parking surplus minus time costs of cruising, by lowering prices by $1.25/hour
citywide. This price adjustment compensates drivers for the decline in availability due to reduced
supply, while causing only modest changes in revenue and cruising costs. Together, these findings
highlight the importance of coordinating curb space provision and parking prices in managing and
achieving more flexible use of curb space.

Related Literature. Our paper integrates ideas from several strands of literature in economics,
urban planning, and operations research. A central area of focus is the economics of parking, which
studies how parking policies affect traffic externalities and urban welfare. Theoretical work on
parking dates back to Vickrey (1954), who proposed spatially and temporally differentiated parking
prices. Foundational contributions by Arnott and Rowse (1999), Anderson and De Palma (2004),
Arnott and Inci (2006, 2010), and Arnott et al. (2015) provide theoretical support for parking pric-
ing as a tool to reduce traffic externalities and improve urban welfare. Despite the well-established
theoretical foundation, empirical evidence on parking pricing remains limited. Recent empirical
work using event-study designs finds evidence that parking pricing policies can reduce congestion
and related traffic externalities from private cars.6 Krishnamurthy and Ngo (2020) analyzes data

6See Kashner and Ross (2025) for evidence of traffic externalities from car usage.
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from San Francisco’s pilot demand-based pricing program and concludes that the implementation
of demand-based pricing substantially increased bus ridership and reduced traffic flow, yielding
significant economic gains through lower congestion and emissions. Ostermeijer et al. (2022)
studies a citywide increase in street parking prices in Amsterdam, a policy that raised prices by
66% on average and made the city the most expensive in the world for curbside parking, and finds
that the policy reduced street parking demand by nearly 20% and led to a noticeable reduction
in traffic flow. Gragera et al. (2021) uses a reduced-form framework that incorporates both ob-
served parking fees and unobserved cruising costs across proximate parking locations to estimate
the price elasticity of parking demand, informing our BLP-style structural approach that captures
substitution among nearby parking options. Research in urban planning and operations research
complements this economic literature by emphasizing the design, operation, and optimization of
parking systems.7 We contribute to this interdisciplinary literature on parking by quantifying the
welfare of curbside parking within a joint destination-parking choice framework and evaluating
the trade-offs of alternative policy designs for managing curb space through parking instruments.

Our research is also tied to the literature on spatial equilibrium in transportation. Recent empir-
ical work, such as Frechette et al. (2019), Rosaia (2020), Buchholz (2022), Almagro et al. (2024),
Barwick et al. (2024), Durrmeyer and Martínez (2024), Castillo (2025), Cook and Li (2025), and
Cook et al. (2025), has focused on in-motion vehicle systems, including ride-sharing platforms,
traffic flows, public transit networks, and tolls and road pricing. However, parked vehicles are
equally critical, with an average car spending 95% of its lifetime parked (Shoup, 2018). We con-
tribute to the literature by studying parking decisions and quantifying the equilibrium and welfare
implications of vehicle storage, offering a complementary perspective on the still state of vehicles
and their role in facilitating urban mobility and expanding market access to urban destinations.

Our paper also contributes to the growing literature that uses GPS data to study urban mobility
and spatial behavior. Athey et al. (2018), Cao et al. (2024), Cook (2024), and Couture et al. (2025)
use GPS-based data to estimate heterogeneous preferences for amenities and compute travel time;
Gupta et al. (2022) and Cook and Li (2025) analyze the welfare and distributional implications of
new transportation systems; Almagro et al. (2024) studies optimal urban transportation policies,
emphasizing the trade-offs between road pricing and public transit policies; Miyauchi et al. (2025)
examines how consumption externalities shape urban agglomeration. We extend this literature by
combining GPS-based amenity visit data with high-frequency parking transactions to study the

7Some key studies include Shoup (2005, 2018), Kelly and Clinch (2009), Millard-Ball et al. (2014); Millard-Ball
et al. (2020), Chaniotakis and Pel (2015), Lehner and Peer (2019), Dalla Chiara and Goodchild (2020), Weinberger
et al. (2020), and Feldman et al. (2022). Feldman et al. (2022) also studies the welfare effects of demand-based pricing,
but our paper differs in several important ways: i) we allow parking considerations to influence destination choices; ii)
we observe granular destination visits and can align them with high-frequency parking data; and iii) we use data from
San Francisco’s citywide implementation of demand-based pricing rather than data from the pilot program, where
demand-based pricing was introduced only in limited areas.
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joint destination–parking travel decision and quantify the extent to which parking considerations
factor into travel decisions.

Finally, our work also builds on the literature on amenity choice, which examines the welfare
distribution and spatial sorting of urban amenities. Some notable contributions include Couture
(2016), Davis et al. (2019), Su (2022), Cook (2024), and Almagro and Domínguez-Iino (2025).
We extend this literature by building on Cook (2024) to introduce a second stage to the amenity
choice framework, in which drivers decide where to park after selecting their destinations, thereby
capturing the interaction between destination preferences and nearby parking availability.

2 Pricing Curbside Parking in the U.S.

Since the introduction of parking meters in the early twentieth century, pricing has become
a core instrument of curbside parking policy, complementing rationing such as time limits, per-
mits, special zoning, and other regulatory tools. For decades, most cities relied on simple pricing
schemes that set flat, and often low, hourly rates across time and space. These traditional pricing
schemes have been criticized for encouraging over-parking, misallocating scarce curb space away
from drivers with high willingness to pay (WTP), and inducing cruising. In contrast, variable
and market-based pricing strategies have gained growing support (Anderson and De Palma, 2004;
Arnott and Inci, 2006; Shoup, 2005, 2018). These schemes adjust rates by time and location in
response to observed past demand or increase prices with the duration of parking, which better
balances parking demand and supply (Kaufman et al., 2012). In this paper, we focus on demand-
based pricing schemes that regularly update meter rates by time and location, a reform regarded as
one of the most significant in modern parking (Pierce et al., 2015).

2.1 Demand-Based Pricing

Demand-based pricing, also known as dynamic or performance-based pricing, refers to a pric-
ing mechanism that adjusts prices periodically to reflect demand. In the context of parking, the
conceptual foundation traces back to Vickrey (1954), which proposes replacing time limits and
fixed, low curbside prices with a system of higher rates, comparable to off-street parking, that vary
across time and space. Under this system, parking spaces are effectively “rented” according to
economic principles, balancing demand with scarce supply, preventing overparking, and reducing
cruising. Demand-based pricing helps ensure that curb spaces remain available for drivers with the
highest WTP rather than being allocated on a first-come, first-served basis.

Shoup (2005) proposes a practical rule of thumb for setting demand-based parking prices: ad-
just prices to maintain a persistent one or two open spaces per parking block. In practice, local gov-
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ernments implement this by keeping the average curbside utilization within a preset target range.
Each period, usually monthly or quarterly, local governments measure the occupancy of metered
parking. If a parking segment’s occupancy falls within the target utilization range, prices remain
unchanged; otherwise, they are adjusted accordingly. The specific pricing rules and occupancy
thresholds vary across local jurisdictions.

2.2 Demand-Based Pricing in San Francisco

Among the U.S. cities using demand-based pricing for parking, San Francisco offers one of
the most comprehensive implementations.8 Launched as a pilot program between 2011 and 2013
under the name SFpark Pilot, it was funded through an $18 million federal grant from the U.S.
Department of Transportation. The program’s primary goal, aligned with Shoup (2005), was to
use pricing to maintain some open spots per parking block, thereby reducing cruising for spaces,
a significant contributor to urban congestion and greenhouse gas emissions. To achieve this goal,
every parking block’s occupancy rate was targeted to be between 60% and 80% through periodic
price adjustments. Besides reducing traffic externalities, by stabilizing parking conditions, the city
sought to improve market access to local establishments, thereby boosting foot traffic and sales for
urban amenities. The pilot operated in seven parking management districts, including Civic Center,
Downtown, Fillmore, Fisherman’s Wharf, Marina, Mission, and South Embarcadero, collectively
covering roughly 6,000 metered spaces, about 25% of the city’s total on-street parking (SFMTA,
2014b). Evaluations reported improved parking availability and reduced cruising, congestion, and
greenhouse gas emissions in treated areas. Following the pilot success, San Francisco implemented
a citywide demand-based pricing system in early 2018, becoming the first U.S. city to adopt such
an approach at scale.

Before the program, San Francisco, like many other U.S. cities, relied on flat meter rates. These
rates remained constant throughout days and years, with downtown areas charged $3.50/hour and
other districts charged $2.00/hour (Krishnamurthy and Ngo, 2020). Under the demand-based pric-
ing program, prices increase (decrease) quarterly in $0.25 increments when occupancy rates exceed
(fall below) the target range, with the price cap as of June 2019 set at $8.00/hour and the minimum
rate at $0.50/hour. These price adjustments are announced publicly on the San Francisco Munic-
ipal Transportation Agency (SFMTA) website, and in general, price information is available on
parking apps, such as PayByPhone. Pricing varies by parking block, day type, and time of day. A
parking block is the street segment between a pair of opposing blockfaces (see Figure A.1). Day
types include weekdays (Monday through Friday) and weekends (Saturday), while meters are free

8Other cities implement demand-based pricing at a more limited scale. For example, Seattle uses zone-level rather
than block-level pricing, Los Angeles implements demand-based pricing only in selected neighborhoods, and Boulder
varies prices by location but not by time.
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on Sundays. A typical day is divided into several time bands: morning (before 12 pm), early af-
ternoon (12 pm to 3 pm), late afternoon (3 pm to 6 pm), and, in some areas, evening (after 6 pm).
As detailed by Pierce and Shoup (2013), this pricing scheme steers short-stay and time-sensitive
drivers (including those with mobility limitations or dependents) toward more convenient spaces,
while nudging others to park slightly farther away.

3 Data

To construct our analysis data, we rely on several raw datasets. This section describes our
primary data sources and provides the summary statistics for our main variables.

3.1 Data Sources

3.1.1 Parking Data

We combine San Francisco’s administrative data on parking inventory, street characteristics,
and metered parking transactions to construct our main dataset for parking.

The parking inventory data, provided by SFMTA, includes information on the geographic co-
ordinates of each parking location. For metered parking, the dataset reports the number of metered
spaces per parking block, each meter’s hourly rate at different times, and other applicable restric-
tions. We focus on metered spaces that are open for the general public parking.9 We aggregate
the data from meter-level to parking-block-level as meters on the same parking block generally
share the same prices and restrictions. For off-street parking, the data generally do not include
information on prices or supply but indicate whether each facility is open to the public or reserved
for private use. In this paper, we refer to facilities open to the general public as public-use garages
(or off-street parking), and those restricted to specific users as private-use garages.10

We augment the parking inventory data with information on each street segment’s characteris-
tics that impact parking convenience and desirability, such as whether the segment is one-way or
has steep terrain.11 A street segment’s orientation (one-way or two-way) affects parkers’ ease of
access to the segment, while a segment with steep slope may be less attractive to parkers due to
more difficult parking maneuvers and walking. Data on street orientation and steep terrain are ob-
tained from the San Francisco Department of Public Works (SFDPW) and Department of Planning

9Some metered spaces are reserved for specific uses (e.g., loading zones, accessible parking), and some spaces are
operated under parking permits.

10Public-use garages may be operated by either the local authority or private entities. They include off-street
parking facilities such as surface lots and multi-story parking structures that are accessible to the general public, rather
than limited to specific groups such as employees, tenants, or customers.

11San Francisco has many hilly streets.
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(SFDP), respectively.12 We also obtain each street segment’s sweeping schedule from SFDPW and
later exploit its exogeneity as an instrument when estimating parking preferences.13 Since street
cleaning in the commercial areas of San Francisco occurs only during the early part of the day, we
estimate the model using data from timebands 1 (opening to 12 pm) and 2 (12 pm to 3 pm). We
hereafter refer to timebands 1 and 2 as morning and afternoon parking, respectively.14

We then match the data with SFMTA’s high-frequency metered parking transactions from June
1 to June 30, 2019. The transaction data records the specific meter at which each transaction
occurs, along with its timestamp and duration. From this information, we infer each parking
block’s availability, that is, the fraction of time during which open spaces exist within a timeband.
We then combine the number of transactions at each parking block with information from other
datasets to derive each block’s market share. See Section 6.2 for more details.

3.1.2 Destination Data

Our destination data comes primarily from Veraset mobile-device visit data covering the pe-
riod from June 1 to June 30, 2019.15 Veraset collects raw GPS coordinates and timestamps
from anonymized devices, and then aggregates these sequences into visits to POIs. Veraset visit
data reports each visit’s POI geolocation and category (based on NAICS code classifications),
chain affiliation (brand), on-site parking information, timestamp, minimum dwell time at the POI,
anonymized device ID, and the device’s inferred home census block group (CBG).16 We focus
on visits to restaurants, shops, and entertainment venues, as these destinations tend to generate
metered parking demand. We follow Cook (2024) in choosing relevant NAICS codes and subcat-
egories within the main categories.17 We aggregate the data from POI-level to street-block-level
to avoid the issue of POIs with zero visits within a given time unit (i.e., a specific timeband on a
particular day). We augment the visit data with information on special events occurring near each
street block in San Francisco during June 2019, obtained from SFMTA.

We focus on visits by Bay Area residents, including those living in San Francisco, to destina-
tions in San Francisco, as this sample includes drivers who look for short-term parking and find

12SFDP provides geographic data on steep terrain, defined under the California Environmental Quality Act as
slopes exceeding 20%.

13See Section 6.2.
14Average daily visits to our consumption amenities of interest in the commercial areas are approximately 9,000,

10,000, and 11,500 for timebands 1, 2, and 3, respectively. Thus, restricting estimation to the first two timebands still
provides a representative sample of parking behaviors.

15We access the Veraset visit data (Veraset, 2022) through Dewey (deweydata.io), a data access platform for aca-
demic researchers.

16Some POIs lack reported information on on-site parking. In these cases, we supplement the POI data with
SFMTA off-street parking data to fill missing values.

17See Table A.1 in Cook (2024) for more details.
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metered parking a relevant option.18 While the GPS-based visit data allows us to infer the total
number of visits to POIs in the city, we do not observe which visits are made by private cars.
To recover the proportion of visits by car, we augment the visit data with SFMTA 2019 Travel
Decision Survey. The survey was conducted among Bay Area residents who visit San Francisco.
Respondents were asked about their trip purposes, modes of transportation, and broadly defined
home locations. From this survey, we derive the share of Bay Area residents who drive to San
Francisco destinations. We infer short-term parkers from the survey based on respondents’ re-
ported trip purposes. For example, respondents who drive to San Francisco for shopping or dining
are likely short-term parkers, whereas those who drive to work or school are likely not. Combining
this with the visit data, we can estimate the population of drivers and parkers in the city.

3.1.3 Assessed Land Value Data

Our land value data comes from the San Francisco Office of the Assessor-Recorder (SF Assessor-
Recorder). The dataset reports assessed land values and parcel sizes for each fiscal year, as
recorded for property tax purposes. We use data from the fiscal year 2018-2019 in our analy-
sis. We compute the assessed land value per square foot for each parcel and aggregate to the
neighborhood level to obtain the average assessed land value per square foot per neighborhood.19

Assessed land values serve as a proxy for the economic value of alternative land uses and provide
a standardized measure of land value that is comparable across locations in the city.

3.2 Summary Statistics

We present summary statistics for the key variables used in the analysis.
Figure 1 shows the map of San Francisco with POIs that include restaurants, shops, and en-

tertainment venues. We focus on the city’s commercial areas (inner city), shown in blue, located
along the northeastern corridor and the waterfront, areas with the highest density of economic ac-
tivity. These areas occupy only about 20% of San Francisco’s land area but account for roughly
60% of POIs in our sample. The inner city consists of the following neighborhoods: Financial Dis-
trict/South Beach, South of Market, Mission, Castro/Upper Market, Nob Hill, Western Addition,
Marina, Japantown, Chinatown, North Beach, Russian Hill, Pacific Heights, and Tenderloin.

Table 1 presents the characteristics of destinations in the inner city. Our sample includes 8,814
POIs aggregated into 1,057 street blocks. Restaurants constitute the largest category, represent-
ing nearly half of all POIs in the sample, while shops and entertainment venues also account for
substantial shares. Notably, only less than 2% of POIs in the sample have their own parking lots.

18Short-term parkers refer to drivers who look for hourly parking, rather than daily, monthly, or permit parking.
19We use the Analysis Neighborhood definition provided by the San Francisco Mayor’s Office of Housing and

Community Development (MOHCD) to define a neighborhood.
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Figure 1: Map of San Francisco

Notes: The map shows the distribution of POIs in San Francisco, color-coded by amenity category: restaurants (blue),
shops (green), and entertainment venues (orange). The NAICS codes for these POIs are provided in Table A.1 in Cook
(2024). The shaded blue area represents the city’s commercial neighborhoods, located along the northeastern corridor
and waterfront. The POI data is sourced from Veraset for the period June 1 - 30, 2019.

Figure 2 shows price variations for the 886 metered blocks overseen by SFMTA in the inner
city included in our sample. Panel (a) shows average hourly prices across blocks, averaged over
morning and afternoon periods as well as weekdays and weekends. There is substantial cross-
sectional variation: hourly prices range from $0.50 to over $7.00 in June 2019, with most blocks
priced between $2 and $4. Panel (b) shows the difference between morning and afternoon prices
across blocks. A considerable number of blocks have afternoon prices that are substantially higher
than morning prices (up to over $5). This rich variation in prices, both across location and over
time, allows us to estimate price elasticity in our later analysis, which is generally difficult in
settings with uniform pricing.

Table 2 shows the summary statistics for other key parking variables, such as parking availabil-
ity and temporary non-metered parking closures (e.g., street sweeping), at the block–timeband–date
level. Thanks to demand-based pricing, parking availability is generally high: on average, a block
has an open space 96% of the time, meaning the block has no available spaces for only about 10
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Table 1: POI Characteristics

N = 8, 814 Percentage

Amenity Categories
Restaurants 47.3%
Shops 36.7%
Entertainment 16.1%

Parking Lot
Own Parking Lot 1.7%
No Parking Lot 98.3%

Notes: This table reports characteristics of POIs in San Francisco’s commercial areas, focusing on restaurants, shops,
and entertainment venues. The POI data is sourced from Veraset (June 2019). We show the distribution of POIs by
amenity category and the share of POIs with on-site parking lots. The sample includes 8,814 POIs across 1,057 street
blocks. Information on POI parking lots is obtained from Veraset and supplemented with SFMTA data on off-street
parking for private use to fill in missing values.

Figure 2: Hourly Price Variation across Location and Time

(a) Cross-Sectional (b) Temporal

Notes: The figure presents the distribution of hourly parking prices across the 886 metered blocks overseen by SFMTA
in San Francisco’s commercial areas for June 2019. Panel (a) shows the cross-sectional distribution of average hourly
prices across block, where each block’s price is averaged over morning and afternoon periods as well as weekdays and
weekends. Panel (b) shows the difference between afternoon and morning prices across block.

minutes per 180-minute timeband. However, availability varies substantially across blocks, time-
bands, and dates, with some blocks occasionally experiencing near-zero availability. Non-metered
parking closures also display significant variation: while the average block experiences roughly
four closures per timeband, some blocks have none and others experience as many as 83 closures.
Together, the statistics underscore the rich variation in parking conditions across San Francisco’s
commercial areas.
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Table 2: Summary Statistics of Parking Availability and Non-Metered Parking Closures

Variable Mean Std. Dev. Min Max

Parking Availability (%) 96.16% 13.50% 0.50% 100%
Non-Metered Parking Closures (occurences) 4.26 10.73 0 83

Notes: This table presents summary statistics for parking availability and non-metered parking closures at the
block–timeband–date level in San Francisco’s commercial areas for June 2019. Parking availability is measured as
the fraction of minutes within a 180-minute timeband during which at least one space is open. Non-metered park-
ing closures include non-metered parking blocks closed for street cleaning. Statistics are calculated across 41,210
block-timeband-date observations.

4 Descriptive Statistics

In this section, we present some descriptive statistics about the empirical setting and discuss
how they motivate our structural model in Section 5.

Travel Patterns and Demand for Metered Parking. The prevalence of driving to consumption
amenities is particularly relevant for metered parking demand. Table 3 summarizes travel patterns
to San Francisco by Bay Area residents based on the 2019 Travel Decision Survey. Leisure trips,
including dining out, entertainment, recreation, shopping, and errands, account for nearly 40% of
all trips to the city. Among these, roughly half are made by private car, either driving alone or
with others. Unlike commuters who often have reserved workplace parking, visitors to restau-
rants, shops, and entertainment venues rely on parking options such as street parking, commercial
garages, or POI-owned lots. As shown in Table 1, only fewer than 2% of POIs provide on-site
parking. Moreover, in the commerical areas, most curb spaces are subject to tow-away and other
restrictions, and off-street garages are costly and sparse, making metered parking vital in accom-
modating visitors to consumption amenities and facilitating access to San Francisco’s commercial
neighborhoods.

Spatial Heterogenenity in Parking Conditions. In the inner city, parking conditions vary sub-
stantially even across adjacent blocks. For example, blocks charging more than $6/hour can be
located next to blocks priced less than $2, which indicates strong heterogeneity in parking choices
and suggests that drivers make highly granular parking decisions. Figure 3 illustrates the spatial
variation in hourly parking prices and availability across blocks, zooming in on the North Beach
neighborhood. Parking availability and prices differ significantly among nearby blocks. Availabil-
ity tends to be lower where prices are high, consistent with the demand-based pricing mechanism.
However, some blocks with relatively high prices also exhibit high availability despite being sur-
rounded by POIs. This heterogeneity suggests that drivers may face trade-offs when choosing
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Table 3: Travel Patterns

Percentage

Trip Purpose
Leisure Trips 39.6%
Commuting Trips 57.8%
Other 2.6%

Trip Mode
Private Car 48.4%
Other Modes 51.6%

Notes: This table presents the distribution of trips made by Bay Area residents to San Francisco, based on the 2019
Travel Decision Survey. We report the share of leisure trips (dining out, entertainment, recreation, shopping, and
errands) versus commuting trips (work-, school-, and home-related travel), as well as the share of private car trips
(where respondents drove alone or with others) versus other transportation modes (e.g., ride-hailing (Uber/Lyft), taxi,
public transit, bicycle, walking).

where to park, taking into account factors such as proximity to destinations, parking prices, or
physical attributes of each block. This observation underscores the need for a model that captures
drivers’ choices and disentangles their preferences at a granular level, as significant variation in
parking outcomes can arise even across neighboring blocks.

Comparison of Parking Revenue and Land Value. We then compare metered blocks’ parking
revenues with their underlying land values to assess the relative economic return of parking use.
For each parking block, its land value is estimated by multiplying the neighborhood land value per
square foot by the standard metered stall size and the number of metered spaces on the block. We
calculate the PDV of annual parking revenue, using a 7% discount rate, to make the two measures
comparable.20

Figure 4 plots the PDV of parking revenue against land value for all metered blocks in the inner
city. Land values vary substantially across space, and parking revenue is positively correlated with
land value, as expected. However, all parking blocks fall below the 45-degree line, indicating that
parking revenue typically captures only a small fraction of the land’s potential economic value.
On average, each block generates an annual meter revenue of about $30,000, which translates
into a PDV of more than $400,000 and accounts for roughly 23% of the underlying land value.
This comparison, however, reflects only the local government’s gain of parking’s economic return,
omitting the surplus drivers derive from using these spaces. To account for driver surplus and to
quantify a more comprehensive parking return, we present a structural model in the next section.

20The 7% discount rate follows Circular A-94: Guidelines and Discount Rates for Benefit-Cost Analysis of Federal
Programs.
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Figure 3: Heatmap of Metered Parking

Notes: The figure presents a spatial heatmap of parking availability and hourly prices for a section of the North Beach
neighborhood. Each colored strip represents a metered parking block. The top panel shows parking availability by
block, and the bottom panel displays hourly parking prices. Blue dots represent the locations of POIs (restaurants,
shops, and entertainment venues). The parking data is obtained from SFMTA for June 2019, and the POI locations are
sourced from Veraset for the same period.

5 Model

5.1 Model of Driver Choice

We develop an economic model of drivers’ joint decisions on destinations and parking loca-
tions, incorporating how parking considerations factor into travel decisions. In the first stage, Bay
Area drivers draw their trip purposes (dining, shopping, or entertainment), then they choose a street
block in San Francisco that has amenities in that category (hereafter, destination). Street blocks
in San Francisco outside the inner city are treated as a single outside option. In the second stage,
they decide where to park near the chosen destination in the inner city. Drivers have imperfect
information about parking availability, if they arrive and no curbside spots are open, they resort
to using a public-use garage. This redirection of parking due to metered unavailability is inter-
preted as cruising in our framework. This two-stage decision is represented by a two-level nested
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Figure 4: Parking Revenue and Land Value

Notes: The figure presents the relationship between parking revenue and land value for all metered blocks in San
Francisco’s commercial areas. The horizontal axis shows the estimated land value for each parking block, calculated
as the neighborhood land value per square foot multiplied by the standard metered stall size and the number of metered
spaces on the block. The vertical axis shows the PDV of annual parking revenue, calculated using a 7% discount rate.
Each gray dot represents a parking block, and the red dashed line denotes the 45-degree line, where parking revenue
equals land value. The box plots show the median and interquartile range of parking revenue within each land value
bin. Parking revenue is computed using SFMTA metered parking transactions for June 2019, and neighborhood land
value per square foot is computed using data from SF Assessor-Recorder.

logit (Cardell, 1997; McFadden, 1978), where each destination forms a nest, and parking loca-
tions nearby are alternatives within nests. The nesting structure captures the feedback between
destination and parking choices.

5.1.1 Stage 2: Parking Demand Conditional on Destination

Given drivers’ destinations in the inner city, we model their parking choices. We define a
market as timeband t on date d. We perform our analysis at the timeband level rather than at a finer
resolution (e.g., the minute level) for two reasons. First, the price data is defined at the timeband
and day type level: within a given day type, the three-hour morning and afternoon timebands have
their own prices, which SFMTA sets based on aggregate demand for each timeband. Second,
aggregating to the timeband level reduces computational burden. The set of parking locations
accessible to a driver visiting destination j in market td is Kjtd, which consists of all metered
blocks and public-use garages within 400 meters of the destination. The radius used to define
the parking choice set follows established research in urban planning, such as Millard-Ball et al.
(2020) and Weinberger et al. (2020). All nearby public-use garages are included as a single outside
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option (denoted 0) in this stage.
Upon arriving at j, driver i has two parking options: i) park directly at the outside option, or

ii) attempt to park at metered block k ̸= 0 ∈ Kjtd first, and if k is unavailable, resort to the outside
option. We assume that public-use garages are always available, and thus attempting to park at a
garage is equivalent to directly parking at that garage.

A driver visiting j during timeband t on date d receives the following mean utility from parking
at the outside option

δ0|jtd = γt + αgaragePGj (1)

with γt being timeband fixed effects and PGj being the number of public-use garages around j.
We define the mean utility of parking at metered block k as

δktd = γn(k) +Xpark
ktd αX (2)

where γn(k) is neighborhood fixed effects and Xpark
ktd is a vector of parking block k’s characteris-

tics,21 including hourly parking price Pktd relevant for timeband t on date d, street orientation, and
an indicator for steep terrain. We abuse notation by letting Pktd denote prices at different locations
and times, but it is important to note that prices vary by block, timeband, and day type (weekday
and weekend) rather than by specific date.

When deciding whether to try parking at block k, a driver cares about the distance between
their destination j and parking block k, the mean utility of parking at k that would be realized if
k is available, and the mean utility that they would receive when parking at the outside option in
case k is unavailable. Driver i thus receives the following mean utility from attempting to park at
metered block k

δk|jtd = αdistDistkj + EAktd × δktd︸ ︷︷ ︸
k available

+(1− EAktd)× δ0|jtd︸ ︷︷ ︸
k unavailable

+ξktd (3)

where Distkj is the straight line distance between parking block k and destination j normalized
by the radius of parking choice set,22 EAktd is the expected availability of k during timeband t on
date d, which we define in Section 5.2, and ξktd denotes unobserved preferences for attempting to
park at block k.

The value of parking near destination j is the expected utility from choosing the best parking

21Drivers care about neighborhood characteristics in deciding where to park. For example, within 400 meters of a
destination, drivers can access parking blocks in both Financial District/South Beach and Tenderloin neighborhoods,
but they might prefer the former as the latter has a higher crime rate.

22The straight line distance is measured as the distance between the centroids of destination j and parking block k.

17



location to attempt, conditional on visiting j. In the nested logit literature, it is referred to as a
nest’s inclusive value and has a closed-form expression

V park
jtd = log

exp (δ0|jtd/βpark

)
+

∑
k∈Kjtd/{0}

exp
(
δk|jtd/βpark

) (4)

where βpark is a nesting parameter that links parking and destination choices (see Equation 6
below).

5.1.2 Stage 1: Destionation Demand Conditional on Trip Purpose

During timeband t on date d, driver i draws an amenity category c and decide which street
block with amenity c to visit. The set of street blocks in San Francisco is denoted J , where 0 ∈ J
represents the outside option consisting of destinations in San Francisco outside the commerical
areas.

If driver i chooses the outside option, they receive the normalized utility

Ui0ctd = γ̃h(i) + γ̃c + γ̃t + εi0ctd (5)

where the γ̃ terms denote home CBG (h(i)), amenity category (c), and timeband (t) fixed effects.
Driver i cares about the distance between their home and destination j, the value of parking

near j, and other attributes of j. The utility they receive when visiting destination j ∈ J /{0} is

Uijctd = βdistDisth(i)j + βparkV
park
jtd + βbrandBrandjc +Xdest

jdt βX + ωjctd︸ ︷︷ ︸
δj|h(i)ctd

+εijctd (6)

where Disth(i)j is the straight line distance between driver i’s home and destination j,23 V park
jtd is the

parking value around j defined in Equation 4, Brandjc is the number of branded POIs of category
c on block j, Xdest

jdt contains other attributes of j (including time-varying factors like nearby special
events within a certain radius of j and time-invariant characteristics like store composition),24 and
ωjctd denotes unobserved preferences for j conditional on category c.25 The idiosyncratic error
terms ε follow appropriate distributions to generate the nested logit structure as in Cardell (1997).

23The straight line distance is measured as the distance between the centroid of a destination and the weighted
centroid of the home CBG. Because home locations are observed only at the CBG level, which is coarser than the
destination (street block) level, we use a weighted centroid to provide a more consistent measure of distance.

24In our main analysis, we define a nearby special event as one occurring within 400 meters of a destination, but
our results are robust to a wide range of radii.

25Controlling for store composition (i.e., the number of restaurants, shops, and entertainment venues on block j) is
a reduced-form way to account for trip-chaining behaviors, similar to how Cao et al. (2024) models consumer utility
as a function of density.
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We let δj|h(i)ctd denote the mean utility of choosing destination j conditional on home CBG h(i)

and drawn trip purpose c.

5.1.3 Choice Probabilities

Stage 1. From Equation 6, conditional on coming from home CBG h(i) and drawing amenity
category c, the probability that driver i visits destination j takes the standard logit formulation
(McFadden, 1973)

sj|h(i)ctd =
exp(δj|h(i)ctd)∑
j′ exp(δj′|h(i)ctd)

(7)

From the conditional choice probability sj|h(i)ctd, we compute the share of drivers visiting des-
tination j during timeband t on date d, denoted sjtd. See Appendix B.1 for details on the compu-
tation.

Stage 2. From Equation 3, the probability that a driver arriving at j ∈ J /{0} attempts parking
at block k ∈ Kjtd is

sk|jtd =
exp(δk|jtd/βpark)∑

k′∈Kjtd
exp(δk′|jtd/βpark)

(8)

The mean utility δk|jtd is normalized by the parameter βpark from Equation 6 to account for the
nesting structure, which captures the correlation among parking alternatives within the same des-
tination nest.

See Equation 14 or Appendix B.1 for how to compute sktd, the unconditional share of drivers
attempting to park at metered block k upon visiting the inner city, from the conditional share
sk|jtd.26

5.2 Expected Availability of Parking

As noted in Section 3.1.1, we measure a block’s availability during a 180-minute timeband
as the fraction of minutes with at least one open space. This measure can be interpreted as the
probability of finding an open space at a randomly chosen minute during that timeband. Before
arriving at a parking block, drivers hold expectations about this probability, which, in practice, is
formed with their experience of local parking conditions or via parking apps’ predictions.

26Equation 14 shows how sktd is computed when destination shares are observed in the data, whereas Appendix
B.1 derives sktd fully from the model, which we use to compute new equilibria in the counterfactual analysis in Section
8.
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Specifically, the ex-post availability of block k within a 180-minute timeband is measured as

Aktd =
oktd
180

(9)

where oktd is the number of minutes within 180-minute timeband t that block k has at least one
open parking spot. We observe oktd, and thus Aktd, from the metered transaction data.

In our model, we assume oktd follows a binomial distribution

oktd ∼ Binomial(180, EAktd) (10)

where EAktd is the ex-ante probability that block k has at least one open spot in any given minute
during timeband t on date d, representing drivers’ expected availability. The expectation of avail-
ability is rational, since

E[Aktd] =
E[oktd]
180

=
180× EAktd

180
= EAktd (11)

We model the expected availability of parking block k during timeband t on date d using a
binomial generalized linear model (GLM) with a logit link function

logit(EAktd) = ηAAkt + X̆ktdηX + γ̆d (12)

where γ̆d denotes date fixed effects, Akt is the predicted baseline availability of block k during
timeband t, and X̆ktd represents observable shocks to parking block k during timeband t on date d

that may impact availability. This specification captures how drivers form expectations in practice:
they have baseline knowledge of how busy block k typically is during timeband t (captured by
Akt), which they update for each date based on observable factors (captured by X̆ktd and γ̆d).

We predict the baseline availability Akt using the Erlang B formula (Erlang, 1909). In our
parking context, Erlang B gives the probability that all parking spaces on block k are occupied
during timeband t when a driver arrives, given the average rate at which drivers attempt parking at
k (demand) and the number of parking spaces at block k (supply), both inferred from our parking
data. The Erlang B formula is described in detail in Appendix B.2. Akt is then one minus the
computed Erlang B.

We include the number of nearby non-metered blocks that are closed for parking during time-
band t on date d in X̆ktd. Non-metered blocks are typically reserved for special uses, such as
loading zones, accessibility parking, or permit parking. When these blocks are closed due to tem-
porary restrictions, such as street cleaning, drivers who would have used these blocks might shift
to nearby metered blocks, lowering availability there.
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6 Estimation

The estimation of drivers’ travel decisions with destination and parking choices in Section 5.1
is done sequentially following the approach in Train (2009) and Azar et al. (2022). We estimate
the model in Section 5 in three steps. First, we estimate Equations 10 and 12 to obtain the expected
availability parameters (η) and predict ÊAktd. Second, we use ÊAktd and the observed parking
characteristics to estimate the parking preference coefficients α and the nests’ inclusive values
V̂ park
jtd from Equation 4. Note that at this stage, we can only recover α̃ =

α

βpark

, where βpark is

the nesting parameter (see Section 6.2 for further details). Finally, from V̂ park
jtd and the observed

destination attributes, we estimate the destination preference parameters (β).

6.1 Estimation of Expected Availability

We estimate the parameters η and the fixed effects γ̆d in Equation 12 using Maximum Likeli-
hood Estimation. The corresponding log-likelihood is given by 27

logL =
∑
k,t,d

[oktd log(EAktd) + (180− oktd) log(1− EAktd)] (13)

where EAktd, as defined in Equation 12, is a function of η, γ̆d, X̆ktd, and Akt. The variables X̆ktd

and Akt are either directly observed or inferred from the parking data.28

We report the full estimation results in Table A.2. We then convert the estimates to average
marginal effects for interpretation. Overall, a one percentage point (pp) increase in baseline avail-
ability Ak corresponds to a 0.21 pp increase in expected availability EAkt. This suggests that
drivers’ expectations are strongly anchored to baseline conditions, with roughly one-fifth of vari-
ation in baseline availability translating into changes in expected availability. Closures of nearby
non-metered parking blocks have a modest yet statistically significant effect (at the 1% level) on
expected availability, reducing expected availability by about 0.28 pp when at least one nearby
non-metered parking block is closed. Date fixed effects account for the remaining variation.

6.2 Estimation of Parking Preferences

In estimating the parking choice model, we treat drivers’ destination choices as given from the
data. Specifically, we observe sinnerjtd , the share of drivers visiting destination j relative to the total
number of drivers visiting the inner city.

27Here we omit terms that do not depend on η in the log-likelihood.
28See Appendix B.2 for details on how to compute Akt from the parking data.
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From the model, we compute sk|jtd (see Equation 8), the probability that a driver arriving at
destination j in the inner city attempts to park at metered block k. The total share of drivers visiting
the inner city who attempt to park at metered block k, regardless of their specific destination, is
then

sktd =
∑

j∈J /{0}

sk|jtd × sinnerjtd (14)

To estimate the parking parameters, we equate the model-predicted shares sktd with their ob-
served counterparts in the data. We now discuss how to infer this variable from the parking and
destination data described in Section 3.

First, we use GPS data and travel survey data to infer the total number of Bay Area drivers
visiting San Francisco’s commercial areas during each timeband on each day in June 2019. From
SFMTA’s high-frequency metered parking transactions and inventory data, we observe two key
variables for each block k: i) the number of parking transactions, and ii) block-level availability
for each timeband and date Aktd, where availability is defined as the share of minutes with at least
one open spot over the timeband length of 180 minutes (see Section 5.2). We then compute the
share of drivers who successfully park at block k, shpark

ktd , by dividing the number of transactions at
k by the total number of Bay Area drivers visiting the inner city in market td from the destination
data.

Nonetheless, we need to infer the share of drivers who attempt to park at block k, not just those
who successfully find a spot. We recover this by adjusting for availability: the share of drivers
attempting to park at k during timeband t equals the share successfully parking at k divided by the
probability of finding an open spot there, i.e., the availability of k during timeband t.29

shattempt
ktd =

shpark
ktd

Aktd

(15)

We then equate sktd and shattempt
ktd to estimate the parking parameters. Note that in choosing

where to park, drivers face different parking trade-offs conditional on their destinations. For ex-
ample, they have different parking distances to k or different numbers of public-use garages to
resort to as their outside option, depending on their chosen destination j. This destination-specific
variation creates heterogeneity in parking utilities across drivers that is analogous to demographic
interactions in random coefficients models. We thus estimate the normalized parking parameters α̃
following the nested fixed point algorithm in Berry et al. (1995) for random coefficient estimation.
We implement the estimation with PyBLP, using the procedure in Conlon and Gortmaker (2020).
Although we do not observe which driver parks where, we know the share of visits to destina-

29This approach to recovering attempt shares follows the discussion of parking utilization in Feldman et al. (2022).

22



tions sinnerjtd and the share of parking attempts at each block skdt. We can treat destination-specific
variables as drivers’ demographic characteristics and use sinnerjtd as the weight for simulated agents
associated with destination j.

Identification. Expected availability EAktd and hourly prices Pktd are likely correlated with the
unobservables ξktd. Desirable unobserved characteristics, such as safety and convenience, attract
more drivers to block k, reducing expected availability and triggering higher demand-based prices.
We address this endogeneity with instrumental variables (IVs) for expected availability and prices.

We instrument for prices using BLP-style IVs: exogenous characteristics of neighboring park-
ing blocks. These characteristics affect block k’s equilibrium price but do not directly enter drivers’
utility for parking at k, satisfying the relevance and exclusion restriction conditions of valid IV
(Berry et al., 1995). Specifically, we use neighboring parking blocks’ street orientation, steep
terrain indicators, and the characteristics of POIs near the neighboring blocks.

To instrument for expected availability, we exploit variation from two sources. First, the ca-
pacity (number of parking spaces) of block k affects expected availability through the baseline
availability Akt computed from the Erlang B formula (Section 5.2). Blocks with more spaces have
higher baseline availability, all else equal. Second, nearby non-metered parking block closures
(e.g., for street sweeping) increase EAktd by displacing parking from non-metered to metered
blocks. These satisfy the relevance condition for valid instruments. Both instruments also satisfy
the exclusion restriction because drivers condition their choices on expected availability itself, not
directly on the underlying capacity nor the closure variables that influence this availability. Capac-
ity provides cross-sectional variation, while non-metered parking closures add temporal variation
in our instruments.

The set of IVs Zktd provides the orthogonality condition E[Zktdξktd] = 0, which is used in the
Generalized Method of Moments estimation following the procedure of Conlon and Gortmaker
(2020).

Parameter Estimates. Note that this estimation procedure gives us α̃ =
α

βpark

, the parking

parameters normalized by the nesting coefficient. Column (2) of Table 4 reports the estimates
of α̃. The results generally align with our expectations. Parkers dislike the distance between
their destinations and parking blocks, one-way street segments, and high expected prices. The
coefficient on steep terrain is statistically insignificant, indicating that drivers generally do not
mind parking on steeper segments. The value of the outside option (conditional on the chosen
destination) increases with the number of public-use garages nearby.

We later estimate βpark and recover the true parking parameters α in Section 6.3. The nor-
malization, however, does not affect our estimates of the inclusive values V park

jtd . From Equation
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4, the inclusive value is computed as the log-sum of exponentiated mean utilities δk|jtd divided by
βpark. Since the parameters and mean utilities are already normalized by βpark, we can consistently
estimate V park

jtd even before recovering βpark.

6.3 Estimation of Destination Preferences

We estimate destination preferences from the destination visit data described in Section 3 and
the estimated V park

jtd obtained from Section 6.2.
Since we observe information on visits to San Francisco by Bay Area residents, including each

individual’s home CBG, trip purpose, timestamp, and destination, we can estimate Equation 6 as
a standard multinomial logit model. We define a market as a tuple of home CBG (h), trip purpose
(c), and time (timeband t on date d). In each market, drivers choose which destination block j (of
category c) to visit.

Identification. We instrument for V park
jtd to address its correlation with the unobservables ωjctd.

Destinations with attractive unobserved characteristics draw more visitors. From Equation 14,
higher destination visits translate into higher parking demand at nearby blocks, making parking
more crowded and triggering demand-based price adjustments. This creates endogeneity between
V park
jtd and ωjctd.

For each destination j, we use the variation in moderately distant special events as instruments
for V park

jtd . Note that these events are distinct from the nearby special events defined in Equation
6: while nearby events (e.g., within 400 meters of j) directly affect foot traffic to j, moderately
distant events (e.g., 400 to 1000 meters from j) do not. Instead, these moderately distant special
events attract crowds and increase parking demand at their nearby parking blocks, reducing the
blocks’ availability. This, however, can spill over and affect the parking options available to drivers
visiting destination j.30 This shifts V park

jtd without directly entering drivers’ utility for visiting j.
In our main analysis, we define moderately distant as events occurring between 400 and 1000
meters from destination j, where the lower bound ensures the event does not directly affect j’s
attractiveness, and the upper bound ensures meaningful parking spillovers. Our results are robust
to a wide range of distances.

Parameter Estimates. We estimate destination preferences using IV-2SLS. Table A.1 reports
the first-stage results. Column (1) of Table 4 reports the estimates of β. Drivers prefer destinations
closer to home and favor street blocks with nearby special events. They also like POIs of all
types and especially branded POIs that align with their trip purposes. Drivers exhibit considerable

30For example, an event occurring 500 meters from j can increase parking demand at some blocks 300 meters from
j, which are within the parking choice set of j.
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parking considerations. The nesting parameter βpark falls within the theoretically required range
of zero to one, a restriction we do not impose in our estimation, which indicates that the assumed
nested logit structure is not rejected by our estimates.

We also report the mean elasticities corresponding to the destination and parking estimates
in Columns (1) and (2) of Table 5, respectively. In Stage 1, distance from home to destination
has the highest elasticity among all attributes (mean elasticity = 3.233), implying that drivers are
most responsive to destination proximity when making travel decisions. The mean elasticity of
parking value, while lower than that of distance, is substantial relative to other physical attributes
of destination j (such as nearby special events and POI composition), confirming the intuition that
parking is a subsequent yet significant component of the travel decision. In Stage 2, demand for
parking is elastic with respect to both expected availability and prices. This suggests that pricing
can meaningfully influence parking choices, as drivers respond to parking fees both directly and
indirectly through their effect on expected availability. We further examine the impacts of parking
pricing in Section 8. The mean elasticity of steep terrain indicator is 0 because the variable’s
coefficient estimate is statistically insignificant.

7 The Welfare of Parking

In this section, we evaluate the welfare of parking using the framework in Section 5 and the
estimates in Section 6. Understanding how parking availability and pricing affect driver surplus
and cruising externalities is essential for evaluating alternative parking policies, which we discuss
in Section 8.

7.1 Driver surplus

We begin by computing the driver surplus generated by each parking block. First, we calculate
each driver’s total trip value using the nested logit consumer surplus formula, converting surplus
to monetary units by dividing by the price coefficient31

CSictd =
1

−αprice

log

[∑
j

exp(δjh(i)ctd)

]
(16)

where δj|h(i)ctd is defined in Equation 6.
Since drivers are heterogeneous with respect to their home CBGs and trip purposes, we com-

31Since prices interact with expected availability in our parking model, we interpret this as the expected dollar-
equivalent value.
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Table 4: Coefficient Estimates for Driver Choice Model

Estimates

Covariate Destination (β) Parking (α̃)
(1) (2)

No. public-use garage 0.020
(0.002)

Distance to parking −3.338
(0.192)

Expected availability × Hourly price −0.902
(0.041)

Expected availability × Street orientation −0.065
(0.020)

Expected availability × Steep terrain indicator −0.009
(0.029)

Distance to destination −0.090
(0.003)

Value of nearby parking 0.704
(0.064)

No. special event 0.419
(0.042)

No. branded establishment 0.200
(0.004)

No. restaurant 0.016
(0.001)

No. shop 0.023
(0.002)

No. entertainment venue 0.009
(0.003)

Home CBG FE Yes No
Category FE Yes No
Timeband FE Yes Yes
Neighborhood FE No Yes

N 4,078,850 41,210

Notes: This table reports estimates for the two-stage driver choice model. In particular, we report estimates for the two
sets of parameters α̃ (parking choice) and β (destination choice) as discussed in Sections 6.2 and 6.3, respectively.
Columns (1) and (2) show coefficient estimates for destination and parking choices, respectively. Standard errors are
robust and reported in parentheses. Distance to parking (from destination) is normalized by 400 meters, the radius
of the parking choice set around each destination. Branded establishments are defined as establishments in the same
category as drivers’ trip purposes that are affiliated with a chain. (e.g., branded restaurants for dining trips).
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Table 5: Mean Elasticities for Driver Choice Model

Mean Elasticity

Variable Destination Parking
(1) (2)

No. public-use garage 0.013

Distance to parking 3.375

Expected availability 2.441

Hourly price 3.599

Street orientation 0.046

Steep terrain indicator 0

Distance to destination 3.233

Value of nearby parking 0.529

No. special event 0.009

No. branded establishment 0.129

No. restaurant 0.061

No. shop 0.062

No. entertainment venue 0.008

N 4,078,850 41,210

Notes: This table reports mean elasticities corresponding to the coefficient estimates in Table 4. Columns (1) and (2)
report the corresponding mean elasticities of destination and parking parameters, respectively. Distance to parking
(from destination) is normalized by 400 meters, the radius of the parking choice set around each destination. Branded
establishments are defined as establishments in the same category as drivers’ trip purposes that are affiliated with
a chain. (e.g., branded restaurants for dining trips). The mean elasticity of steep terrain indicator is 0 because the
variable’s coefficient estimate is statistically insignificant.
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pute total travel value as a weighted sum across drivers

CStd = Ntd

∑
i,c,h

wictdCSictd

= Ntd

∑
i,c,h

1

Nh(i)td

sc|htdshtd︸ ︷︷ ︸
wictd

CSictd (17)

where Ntd is the number of Bay Area drivers going to San Francisco during timeband t on date d,
Nh(i)td is the number of drivers from home CBG h(i), and sc|htd and shtd are defined in Appendix
B.1.

In our framework, driver surplus from parking at block k during timeband t on date d is mea-
sured as the compensating variation from removing block k from the choice set of all parking
locations in the commercial areas at that time. We have

CSktd = CStd − CS−k
td (18)

where CS−k
td represents the total travel value of all drivers when metered block k is not accessible

for parking.
We then sum city revenue and driver surplus to compute each metered block’s parking surplus

and compare its PDV with the block’s underlying land value to assess the economic return on park-
ing use. This extends our discussion in Section 3, which compares only revenue with underlying
land value. Figure 5 plots the PDV of parking surplus against land value for all metered blocks in
the inner city. In both Figures 4 and 5, most blocks fall well below the 45-degree line, indicating
that parking surplus captures only a small share of assessed land value. However, while in Figure
4, all blocks’ revenues fall below the line, in Figure 5, 5.5% of the blocks lie above it, suggesting
that metered parking can generate substantial surplus for certain high-value locations, exceeding
the value of land uses there. On average, each block’s PDV of parking surplus is over $700,000,
accounting for roughly 40% of its underlying land value. By comparison, the PDV of revenue
alone accounts for only about 23% of land value, as discussed in Section 4.

7.2 Cruising externalities

In our framework, we define a cruising trip as one where a driver attempts to park at a metered
block in the inner city but finds it unavailable and resorts to a public-use garage instead (see Sec-
tion 5.1). Although this is a simplification, it captures the essence of cruising for parking: when
drivers cannot find a metered space, they move between parking locations, creating extra car trips.
Efficient parking management can mitigate this externality.
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Figure 5: Parking Surplus vs. Land Value

Notes: This figure presents the relationship between parking surplus, which is the sum of city revenue and driver
surplus, and land value for all metered blocks in San Francisco’s commercial areas. The horizontal axis shows the
estimated land value for each parking block, calculated as the neighborhood land value per square foot multiplied by
the standard metered stall size and the number of metered spaces on the block. The vertical axis shows the PDV of
annual parking surplus calculated using a 7% discount rate. Each gray dot represents a parking block, and the red
dashed line denotes the 45-degree line, where parking surplus equals land value. The box plots show the median and
interquartile range of parking revenue within each land value bin. There are only 5.5% of metered blocks in the inner
city whose PDV of parking surplus exceed their underlying land values.

The number of cruising trips at block k during timeband t on date d is therefore equal to the
number of drivers attempting to park at k, which is estimated in Section 6.2, minus the number of
successful parking transactions, which we observe in the SFMTA data. We then aggregate cruising
trips across blocks to obtain a total of 68,834 cruising trips in the inner city during June 2019.

We compute the dollar costs of the cruising trips. Based on Weinberger et al. (2020), the
average cruising time in San Francisco is 2 to 3 minutes per trip, while Cookson and Pishue (2017)
estimates an average of 12 minutes spent searching for street parking per trip. Following the U.S.
Department of Transportation’s Guidance on Valuation of Travel Time in Economic Analysis, we
measure the value of travel time savings (VTTS) as 50% of median household income per hour for
local travel and 70% for intercity travel. Using the median household income in the Bay Area in
2019, these values are $72.95 and $102.14 per hour, respectively. We compute the cost of cruising
as

Cost of Cruising = Number of Cruising Trips× Average Cruising Time per Trip× VTTS

With 68,834 cruising trips in the inner city in June 2019, this yields a monthly cruising cost
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ranging from approximately $200,000 (using 2.5 minutes cruising time and local VTTS) to $1,400,000
(using 12 minutes cruising time and intercity VTTS).

8 Counterfactual Analysis

In this section, we conduct two sets of counterfactuals to evaluate the trade-offs of alterna-
tive parking policies. First, we compare demand-based pricing with uniform pricing, the pricing
scheme that most cities in the U.S. use. We set the uniform price at the level that maximizes to-
tal revenue. Second, we evaluate metered parking policies with varying parking supply and price
adjustments. We consider the impacts of the counterfactual policies on parking revenue, driver
surplus, and time costs of cruising. Under counterfactual prices and supply levels, we recompute
equilibrium (fixed point) EAktd for every parking block across all dates and timebands in the data.
See Appendix C for details on how to compute the new equilibrium EAktd.

8.1 Demand-based Pricing and Uniform Pricing

To compare demand-based and uniform pricing, we evaluate San Francisco’s current demand-
based pricing scheme against a uniform pricing scheme of $2.75/hour at every block, the uniform
price level that maximizes revenue. We examine the two schemes in terms of parking revenue,
driver surplus, and cruising time costs.

Table 6: Comparison of Demand-Based and Uniform Pricing

Inner city, per month Revenue Driver Surplus Cruising Trips Cruising Costs Total Welfare
(1) (2) (3) (4) (5)

Demand-based
(status quo)

$2,092,918 $4,187,410 68,834 $251,086 $6,029,242

Uniform $1,628,436 $4,688,966 224,123 $817,537 $5,499,865

Difference $464,482 −$501,556 −155,289 −$566,451 $529,377

Notes: This table compares parking outcomes under demand-based pricing (status quo) and uniform pricing (a coun-
terfactual where all blocks charge $2.75 per hour, the uniform price level that maximizes revenue). All values are
monthly aggregates for San Francisco’s commercial areas in June 2019. Column (1) is the total metered parking rev-
enue in the commercial areas. Column (2) is total driver surplus from metered parking. Column (3) is the estimated
number of trips where drivers attempt to park at a metered block but find it unavailable and resort to a public-use
garage. Column (4) is the total time costs of cruising, estimated with the approach in Section 7.2. Column (5) is
parking welfare, the sum of city revenue and driver surplus minus time costs of cruising. The “Difference” row shows
demand-based minus uniform pricing outcomes.

Table 6 presents the comparison of demand-based and uniform pricing schemes. On the one
hand, demand-based pricing generates higher revenue than the revenue-maximizing uniform price:
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the city collects approximately $464,000 more in monthly parking revenue from commercial areas.
On the other hand, drivers enjoy higher surplus under the uniform pricing scheme, which offsets
the revenue gains. These results arise because, although demand-based pricing allocates parking
more efficiently, drivers face substantially higher prices overall. As of 2019, roughly half of the
blocks had prices above $2.75, and the highest rate was nearly $8, about three times the uniform
rate of $2.75. This pattern is consistent with the elasticity estimates reported in Table 5, which
shows that at the actual 2019 price levels, drivers on average are more sensitive to price changes
than to changes in expected availability.

The criterion with the most significant improvement is cruising. Demand-based pricing re-
duces cruising trips by approximately 155,000 per month, a 69% reduction. This comes from the
improved availability of crowded parking blocks under demand-based pricing relative to uniform
pricing. Using the valuation approach from Section 7.2, this translates to a reduction in cruising
costs of approximately $500,000 to $3,000,000 per month, depending on assumptions about cruis-
ing time and VTTS. Overall, under the status quo demand-based pricing, curbside parking welfare,
measured as the sum of city revenue and driver surplus minus cruising costs, increases by nearly
10% relative to revenue-maximizing uniform pricing.

8.2 Trade-offs of Alternative Parking Policies

We evaluate two types of policy interventions. First, we consider pricing adjustments. Given
that our sample has 886 parking blocks, two timebands (morning and afternoon), and two day
types (weekday and weekend), which yields 3,544 single prices to sets, finding the optimal prices
is computationally challenging. We resort to a simpler pricing rule under which prices are set
according to

P new
ktd = max(0, P current

ktd + 0.25× λ) (19)

where P new
ktd denotes the new price at block k during timeband t on day type d (weekday or week-

end), P current
ktd is the current price at the corresponding block and time, and λ is an integer adjust-

ment factor that can take negative, zero, or positive values. For example, λ = 2 corresponds to a
$0.50 increase, while λ = −2 represents a $0.50 decrease. This rule applies a common adjustment
to prices across all blocks, timebands, and day types. The pricing adjustment is consistent with
San Francisco’s most recent intervention, which implements a citywide $0.25 increase.

Second, we evaluate capacity reductions by simulating scenarios where the number of metered
parking spaces per block is reduced to 25%, 50%, or 75% of baseline capacity. These counterfac-
tuals capture the effects on parking of policies that reduce metered parking supply and potentially
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redirect curb space to alternative uses.32 For each capacity level, we also examine how park-
ing availability and parking outcomes respond to price adjustments, characterizing the trade-offs
among alternative curbside parking policies.

Figure 6 plots parking availability against price changes at baseline capacity. As shown, higher
prices improve availability, increasing the share of blocks with high availability (i.e., those avail-
able more than 75% of the time). Figure 7 examines how citywide price adjustments affect parking
welfare, including city revenue, driver surplus, cruising costs, and total welfare, at the current ca-
pacity. In Panel (a), revenue follows an inverted U-shaped curve, with the current pricing scheme
(marked with an X) positioned near the revenue-maximizing point within the pricing family de-
fined by Equation 19. Moving to the optimum, however, would increase monthly revenue by only
less than 1%. In Panel (b), driver surplus goes up as prices go down, yet the rate of increase slows
down as prices drop further. This is because, at current prices, parking availability is generally high
(as shown in Figure 6), making consumers relatively more responsive to price changes. However,
as prices fall further, equilibrium effects become more pronounced, making availability decline
faster and consumers less responsive to prices. In Panel (c), cruising costs go down as prices in-
crease, which aligns with improved availability. Finally, taking all factors into account, Panel (d)
shows that parking welfare exhibits a hump-shaped relationship with price changes. This suggests
that at the status quo, reducing prices is the dominant strategy for improving parking outcomes. If
the local government prioritizes revenue, prices should be lowered slightly by $0.25/hour. If the
government instead emphasizes parking welfare, prices should be reduced by $2/hour to achieve
the maximum welfare.

Figure 8 examines how parking welfare and revenue respond to different combinations of park-
ing supply reductions and price adjustments. Panel (a) shows total parking welfare across four ca-
pacity scenarios (25%, 50%, 75%, and 100% of current capacity) and various price changes, while
Panel (b) shows the revenue implications. Several patterns emerge. First, reducing capacity alone,
without price changes, results in only a modest change in parking revenue but a substantial decline
in parking welfare. Second, at the status quo capacity, both the value-maximizing and revenue-
maximizing prices require reducing prices. In contrast, when capacity becomes more constrained,
the city needs to raise prices to achieve welfare and revenue maximization. Under extreme capacity
reductions, availability becomes so limited that drivers no longer benefit from price cuts.

32There are caveats to our analysis. First, we do not model how conversion of curb space to alternative uses affects
foot traffic. However, we expect this effect to be marginal in the short to medium run, as curb space conversion and
the resulting changes in area attractiveness take time to materialize. Second, due to data limitations, our framework
does not model the changes in mode choice in response to parking policies. This is less concerning for short- to
medium-run policy analysis, as mode switching and vehicle ownership decisions tend to adjust more slowly than
parking and destination choices. Given the limited research on the relationship between mode choice and parking
policies (Krishnamurthy and Ngo, 2020), understanding how mode choice responds to parking policies remains an
interesting and important direction for future research on parking interventions.
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Figure 6: Shares of Block with High Availability (> 75%) under Counterfactual Pricing

Notes: This figure shows how citywide price adjustments affect the share of blocks with high availability in San
Francisco’s commercial areas, defined as blocks where the probability of finding an open spot during a timeband
exceeds 75%. The horizontal axis shows the total price change in dollars, where price changes (∆$) follow the pricing
rule in Equation 19. The X marks the current pricing scheme (no price change). All outcomes are averaged over
timebands and aggregated over dates in June 2019.

Figure 9 plots parking welfare across different capacity levels under a $1.25 citywide price
reduction, interpolating between simulated scenarios. Relative to the status quo, reducing parking
capacity by about 6%, combined with a $1.25 price reduction, yields a similar level of parking
welfare as the current system, with only a modest decline in city revenue. Lowering prices com-
pensates drivers for the decline in availability due to reduced supply. Among all price adjustments
we consider, a $1.25 reduction allows the largest feasible capacity reduction while holding parking
welfare at its current level. Figure A.2 shows all combinations of capacity and price adjustments
that can achieve the status quo welfare. Overall, coordinating supply reductions with strategic
price adjustments can help local governments balance alternative policy objectives.

9 Conclusion

This paper quantifies the welfare effects of curbside parking, including city revenue, driver
surplus, and time costs of cruising, and uses these measures to evaluate alternative policies for
managing curb space through parking instruments. We develop a structural model of drivers’ joint
destination and parking choices to estimate parking preferences and the extent to which parking
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Figure 7: Revenue, Driver Surplus, Cruising Costs, and Welfare under Counterfactual Pricing

(a) City Revenue (b) Driver Surplus

(c) Cruising Costs (d) Parking Welfare

Notes: This figure shows how citywide price adjustments affect parking outcomes in San Francisco’s commercial
areas. Each panel plots parking outcomes against price changes (∆$) following the pricing rule in Equation 19. The
horizontal axis shows the total price change in dollars. Panel (a) shows monthly parking revenue, Panel (b) shows
driver surplus, Panel (c) shows cruising costs, and Panel (d) shows parking welfare, measured as the sum of city
revenue and driver surplus minus cruising costs. The X marks the current pricing scheme (no price change). All
outcomes are averaged over timebands and aggregated over dates in June 2019.

considerations factor into travel decisions. Our estimates show that in general, parking is subse-
quent yet has a meaningful influence on drivers’ travel decisions. Drivers respond to both parking
prices and expected availability, making pricing an effective tool for managing curbside parking
demand.

Using the model, we quantify driver surplus. We then compare each block’s PDV of parking
surplus, the sum of city revenue and driver surplus, with its underlying land value. We find that
while the PDV of revenue alone is about 20% of land value, the PDV of city revenue plus driver
surplus amounts to roughly 40% of land value. Moreover, 5.5% of blocks have a PDV of parking
surplus that exceeds land value, compared to no blocks when considering revenue alone.
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Figure 8: Parking Welfare and Revenue under Counterfactual Pricing and Supply

(a) Parking Welfare

(b) City Revenue

Notes: This figure shows how parking outcomes respond to combinations of capacity reductions and citywide price
adjustments. Both panels plot parking outcomes against price changes (∆$) following the pricing rule in Equation
19. The horizontal axis shows the total price change in dollars. The four colored lines represent different capacity
scenarios: 100% (current capacity), 75%, 50%, and 25% of current capacity, applied uniformly across all parking
blocks and times. Panel (a) shows monthly total parking welfare (revenue plus driver surplus minus cruising costs).
Panel (b) shows monthly parking revenue. The X marks the current pricing scheme (no price change). All outcomes
are averaged over timebands and aggregated over dates in June 2019.

Our counterfactual exercise shows that, compared to a revenue-maximizing uniform pricing
scheme, San Francisco’s demand-based pricing generates about 30% more revenue while reducing
cruising trips by nearly 70%. Another set of counterfactual analysis suggests that reducing parking
supply by roughly 6% while reducing the status quo demand-based prices by $1.25 citywide pre-
serves parking welfare, with only a modest revenue loss. This implies that cities can achieve more
flexible use of curb space through coordinated parking pricing and curb space provision policies.
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Figure 9: Welfare under Counterfactual Capacity and $1.25 Price Reduction

Notes: This figure shows monthly parking welfare under different capacity levels combined with a $1.25 price re-
duction across all blocks. The horizontal axis shows parking supply (capacity) as a percentage of the current level.
The vertical axis shows parking welfare (city revenue plus driver surplus minus cruising costs). The blue line shows
welfare at each capacity level with prices reduced by $1.25. The red dashed line shows baseline welfare under current
pricing and capacity. The green star marks the capacity level (94.2%) where $1.25 price reductions achieve the same
welfare as the status quo, identified through interpolation. All outcomes are averaged over timebands and aggregated
over dates in June 2019.
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A Supplemental Figures and Tables

Figure A.1: Parking Block versus Street Block

Notes: This map shows the distinction between parking blocks and street blocks in San Francisco. Yellow strips
represent parking blocks, defined as the street segment between a pair of opposing blockfaces. Gray areas represent
street blocks.
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Figure A.2: Price–Capacity Adjustment Combination to Match Baseline Welfare

Notes: This figure shows alternative combinations of price and capacity adjustments that maintain baseline welfare
(status quo at 100% capacity with no price change). The vertical axis shows different capacity levels (as a percentage
of status quo). The horizontal axis shows corresponding price adjustments ranging from -$2.50 to -$0.25 to achieve
baseline welfare. The dashed horizontal line indicates the status quo capacity level (100%). The red star marks
the point of maximum capacity reduction: a $1.25 price reduction paired with 5.8% capacity reduction (to 94.2%)
maintains baseline welfare. The U-shaped pattern indicates that moderate price reductions (around -$1.25) are most
effective at compensating for capacity reductions, while larger price reductions require capacity levels closer to the
status quo to maintain the same welfare level.
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Table A.1: First Stage of Destination Choice Estimation

Covariate Estimate Std. Error

Distance to destination 0.033 0.000
No. special event −0.412 0.003
No. branded establishment −0.037 0.000
No. restaurant 0.008 0.000
No. shop −0.012 0.000
No. entertainment venue 0.003 0.000
No. moderately distant event −0.178 0.001

Home CBG FE Yes
Category FE Yes
Timeband FE Yes

Notes: This table reports coefficient estimates from the first stage of destination choice estimation. The dependent
variable is the inclusive value of parking at each destination. We use moderately distant special events occurring
between 400 and 1,000 meters of each destination to instrument for the endogenous inclusive parking value of that
destination.

Table A.2: Binomial GLM Estimation with Logit Link for EAktd

Variable Estimate Std. Error

Baseline availability prediction 7.703 0.005
Non-metered parking closures −0.103 0.003

Date FE Yes

Notes: This table reports coefficient estimates from the binomial GLM with a logit link for EAktd, as specified in
Equations 10 and 12. We use Maximum Likelihood Estimation.
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B Technical Appendix

B.1 Market Shares

The share of drivers visiting j conditional on coming from home CBG h, regardless of trip
purpose, is

sj|htd =
∑
c

sj|hctd × sc|htd (B.1)

where c ∈ {dining, shopping, entertainment}, sj|hctd comes from Equation 7, and sc|htd, the prob-
ability of drivers visiting category c from home CBG h during timeband t on date d, comes from
our GPS data.

The share of drivers visiting j during timeband t on date d is then

sjtd =
∑
h

sj|htd × shtd (B.2)

where shtd, the empirical distribution of drivers’ home CBG, comes from our GPS data.
The distribution of foot traffic to destination j ∈ J /{0}, conditional on visiting the inner city,

is represented by

sinnerjtd =
sjtd∑

j′∈J /{0} sj′td
(B.3)

where sjtd is computed in Equation B.2.
The share of drivers attempting parking at k during timeband t on date d, conditional on visiting

the inner city, is

sktd =
∑

j∈J /{0}

sk|jtd × sinnerjtd (B.4)

where sk|jtd comes from Equation 8.

B.2 Erlang B Formula

In queueing theory, the Erlang B formula represents the loss probability in systems where
customers arrive and leave if all servers are busy. This probability is a function of the system’s
capacity (supply) and the offered load (demand), the product of the arrival rate and the mean service

5



duration. The predicted availability Akt is then computed as one minus the Erlang B probability

Akt(λkt, Durkt, Capkt) = 1−

(λktDurkt)
Capkt

Capkt!
/

Capkt∑
ι=0

(λktDurkt)
ι

ι!︸ ︷︷ ︸
Erlang B

 (B.5)

where λkt is the average arrival rate to k during timeband t, Durkt is the mean service duration,
and Capkt is the capacity of system k during timeband t.

In our parking context, we infer the mean duration of parking (Durkt) and the number of
parking spaces per block (Capkt) from the parking transaction and inventory data, respectively.33

The arrival rate λkt is computed as the average number of people attempting parking at k per
timeband divided by the length of the timeband (180 minutes). See Section 6.2 for how to derive
the number of people attempting parking at k from the metered parking transactions data.

33In this paper, we treat average duration as a fixed characteristic of a parking block. The duration of parking comes
from the duration of an amenity trip, and thus, the average duration of parking at a block is highly correlated with the
composition of nearby amenities, which is held fixed in our model. Previous work has found mixed findings on
whether parking prices affect parking duration. A report by SFMTA (2014a) and Krishnamurthy and Ngo (2020) find
evidence of shorter duration when prices increase, while Chatman and Manville (2014) finds no statistical association.

6



C Computation of New Equilibrium

Algorithm 1 Equilibrium Computation Under Counterfactual Prices and Supply

1: Given counterfactual prices and supply, initialize EA0
ktd for all (k, t, d)

2: repeat
3: Compute sk|jtd and V park

jtd using α (Sec. 6.2)
4: Compute sj|hctd using V park

jtd and β (Sec. 6.3)
5: Compute sktd (Sec. B.1)
6: Recover Nktd and average across dates to obtain Nkt

7: Compute arrival rate λkt = Nkt/180 (Sec. B.2)
8: Compute Akt given λkt, counterfactual supply, and observed mean parking duration
9: Update expected availability EA1

ktd using η (Sec. 6.1)
10: Compute ∥EA1

ktd − EA0
ktd∥

11: Set EA0
ktd ← EA1

ktd

12: until convergence

Since the dimension of EAktd is large and our framework is highly non-linear, it is challenging
to rigorously prove that the algorithm converges to a unique equilibrium. Instead, we examine this
computationally. For each counterfactual scenario, we use multiple initial guesses for EAktd: we
initialize all blocks’ expected availability at uniformly low, medium, and high levels, and also use
the observed EAktd as a starting point. The resulting equilibria are highly consistent across starting
values, with an average difference of only 0.6% across all (k, t, d) observations.
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