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Abstract

We study welfare gains from innovations in the global markets for liquid crystal

display (LCD) panels. We show direct evidence on both product and process inno-

vations by using detailed data on sales, costs, and investments. We then estimate a

structural model of demand and supply to quantify their contributions. Results suggest

social return on technological investment was positive, but private gains for most firms

were negligible due to competition. We further investigate how competition affects

firms’ incentives to innovate in a series of counterfactual simulations with hypothetical

mergers.
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1 Introduction

Precise measurement of innovations and their welfare impact is a fundamental problem in

economics (e.g., Griliches 1957). Without quantifying them, we cannot empirically assess the

extent to which our standard of living has improved, or critically evaluate numerous public

policies aimed at fostering innovations. The large literature on new-product introduction

(“product innovation”) and productivity growth (“process innovation”) has identified multiple

channels of innovation (c.f., Bresnahan and Gordon [1997]). After reviewing existing studies

on their determinants, however, Syverson (2011) concludes that “the relative quantitative

importance of each ... is still unclear” (page 258).

This paper quantifies the welfare effects of product and process innovations in the global

liquid crystal display (LCD) panel industry from 2001 to 2011. This empirical context is

suitable for studying various types of innovation—larger and better new products became

increasingly common, and the average manufacturing cost (per square meter of surface area)

decreased by 77% from $3,015 to $692 (Figure 1). The LCD industry resembles other high-

tech hardware industries in basic features, including fierce competition among a handful

of firms, global supply chains that are centered around East Asia, and the critical role

of investment in new-generation fabrication plants (“fabs”). Semiconductor devices, hard

disk drives, personal computers (PCs), and many other electronics industries share these

characteristics. Moreover, detailed data are available on not only product prices and sales

quantities but also manufacturing costs and investment records, at all fabs of all major firms.

Hence, LCD panels are both convenient and instructive for welfare analysis of innovations

in broader contexts.

This comprehensive dataset facilitates the identification of gains from innovations in four

important ways. First, manufacturing costs are immediately useful as an instrumental vari-

able (IV) for identifying a demand model, which is an essential step in measuring buyers’

surplus (BS). Second, they allow us to observe markups and calculate producers’ surplus (PS)

without making assumptions on firms’ competitive conduct. Third, by regressing manufac-

turing cost on observed characteristics of fab investments, we can summarize cost-reducing

effects of various technical changes, such as new generations of fab equipment (“vintage capi-

tal”), elapsed time since the start of volume production at each fab (“learning by doing”), and

the use of specific production methods. Fourth, because the fixed costs of fab investments

are also known, we can conduct a cost-benefit analysis for the entire industry, evaluating

social and private returns on technological investments on a global scale.
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Figure 1: Product and Process Innovations in the LCD Industry

(a) Unit Shipment by Size (b) Average Price and Cost

Note: Global, industry-wide aggregate in terms of (a) units of LCD panels and (b) square meters, respectively.

Our analysis proceeds in four stages, which we outline below with a preview of the

findings. The first is the construction and description of a comprehensive dataset on the

global LCD industry. Cost data are a particularly unique element, and we constructed this

database as follows. We obtained a detailed engineering model of manufacturing cost that

has been used as a reliable reference by both buyers and sellers in the wholesale markets for

LCD panels. Experienced analysts at the data vendor have built and maintained this model

by reverse-engineering the detailed cost breakdown of all possible fab-product combinations.

With advice from their lead analyst, we were able to extract relevant information from the

fab-investment records and use it as an input to the cost model. Its output is a collection of

cost estimates for all product-fab-firm combinations in all calendar quarters. Our descriptive

analysis employs this and two other databases (on sales and investments) to provide direct

evidence on product and process innovations, such as rapid turnover of products, notable

improvements in their characteristics, and the details of cost reductions driven by technical

changes. We also show evidence that these wholesale price reductions were passed on to final

goods markets.

The second stage of our analysis is the estimation of a structural model of the spot

market. On the demand side, we use a random-coefficient nested-logit model for differen-

tiated products, where we incorporate heterogeneous price-sensitivity among buyers based

on the geographical distribution of end-users. The estimated demand system translates the

changes in available products and their prices into the changes in compensating variation, a

standard measure of demand-side surplus. We found an improvement in BS of $25 billion
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between 2001:Q1 and 2011:Q4, which translates into a more than 99.9% reduction in prices

if converted to a cost-of-living index.1 This result suggests that even though the decrease in

average price per square meter is large (88.1%), such a direct measure still underestimates

the true extent of welfare gains from innovations.

Our specification of the supply side builds on the demand estimates and exploits the

availability of the cost data as follows. Based on the combination of demand estimates

and cost data, we compute equilibrium prices under hypothetical monopoly and Bertrand

competition, respectively. We then statistically test which of these prices is closer to the

price in the data. Our tests favored monopoly pricing in the first 15 quarters and Bertrand

competition for the rest of our sample period, respectively, which is broadly consistent with

the existence of an infamous price-fixing cartel between 2001:Q4 and 2006:Q1. Accordingly,

all of our counterfactual simulations in the subsequent analyses commonly assume monopoly

pricing and Bertrand competition in these subsample periods, respectively.

In the third stage of our analysis, we conduct three sets of counterfactual simulations to

measure the welfare impact of each type of innovation. Product innovation is the focus of

the first set of counterfactuals, in which we hypothetically eliminate (i) larger new products,

(ii) other new products, and (iii) both of them, respectively. In each t of each scenario, we

recompute equilibrium prices, sales, BS, and PS. Similarly, the second set of counterfactuals

measures the impact of process innovation by hypothetically removing the productivity con-

tributions of (iv) vintage capital, (v) learning by doing, and (vi) both of them, respectively.

In the third set of counterfactuals, we reclassify innovations according to the technological

generation of fab equipment, each of which embodies a bundle of (i) specific larger new

products that require it and (iv) a specific level of cost reduction associated with its vintage.

The rationale for this reclassification is that these specific innovations are physically rooted

in new-generation fabs and amenable to benefit-cost calculations.

Results suggest product and process innovations contributed up to $432 billion (71%)

and $212 billion (35%) to the total surplus (TS) during our sample period, respectively.2

We found substantial heterogeneity across markets (applications): product innovation was

more important in the nascent market for LCD TVs, whereas process innovation was the

main driver of welfare gains in the more mature markets for notebook PCs and desktop

monitors. Hence, the relative importance of product and process innovations depends on
1The cost-of-living index falls exponentially with per-capita surplus. The introduction of new products

from a high reservation utility base can easily drive the index close to zero.
2The two percentages are not meant to add to 100% because they come from separate counterfactuals.
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the phase of the product life cycle. After the reclassification of innovations by technological

generation, we find advanced fabs (5G–10G) contributed $113 billion to TS relative to the

initially available generations of fabs (4G–4.5G). The discounted present value (DPV) of

social benefits from 5G–10G investments is positive even at a relatively high annual discount

rate of 10%. However, the DPV of net producer benefits is negative at any discount rate

above 3.18%, suggesting that the industry as a whole would have been better off without

these technologies. Nevertheless, the realized returns on investment were reasonably high at

two of the seven major firms. Hence, there were both winners and losers from the industry-

wide shift to new technologies.

In the fourth and final stage of our analysis, we leverage our accounting framework in

the above to further investigate the relationship between market structure and the return on

technological investment. Specifically, we hypothetically reduce the number of major firms

(held constant throughout the sample period) from seven to six, five, four, three, two, and

one, simulating all of the 4,803 sequential pairwise combinations. We find that the majority

of these mergers lead to decreases in the DPVs of both TS and the industry-wide sum of

private gains from investments. Thus, absent merger-specific efficiency gains (which we do

not assume), justifying mergers on the grounds of positive innovation effects would seem

difficult.

We have organized the rest of the paper as follows. The remainder of this section re-

views the related literature and clarifies our contributions. Section 2 explains our conceptual

framework. Section 3 provides background information on the industry, technology, and

data. Section 4 documents descriptive evidence. Section 5 presents our demand model and

reports estimation results, along with their implications for welfare and supply-side conduct.

Section 6 quantifies the gains from innovations. Section 7 investigates the relationship be-

tween market structure and firms’ incentives to innovate. Section 8 concludes. The Online

Appendix contains supplementary materials for sections 4–7.

Related Literature. Previous works studying product innovation, including Trajtenberg

(1989), Hausman (1996), Petrin (2002), Ciliberto, Moschini, and Perry (2019), and Grieco,

Murry, and Yurukoglu (2024), have primarily relied on discrete-choice demand models and

sales data. Without data on costs and investments, however, these studies must rely on

assumptions about firms’ conduct to identify marginal costs and cannot compute returns

on investment. We complement this literature by using engineering cost data, the value of
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which has been reappreciated by Genesove and Mullin (1998), Asker, Collard-Wexler, and

de Loecker (2018), and Agarwal et al. (2019).

Existing studies on process innovation have either estimated total-factor productivity

from census-style data (c.f., Syverson 2011) or focused on detailed administrative data on a

single product (Benkard 2000), single plant (Levitt, List, and Syverson 2013), or single divi-

sion of a firm (Sinclair, Klepper, and Cohen 2000). The combination of demand estimation

and industry-wide cost data allows us to assess the quantitative importance of both product

and process innovations on a global scale.

The literature on the rate of return on technological investments has mostly relied on

R&D and patent data (Hall, Mairesse, and Mohnen [2010], Aghion et al. [2005]), but they

suffer from various measurement issues (Lerner and Seru 2022). We exploit the availability of

direct measures of innovation and the institutional context in which fabs (i.e., capital expen-

diture) are the single most important vehicle of technological investments, which provides a

clear lower bound on the economic costs of innovation.

This paper also adds to the growing literature on innovative industries in empirical

IO: Benkard (2004), Goettler and Gordon (2011), Conlon (2012), Igami (2017), Björkegren

(2019), Yang (2020), Igami and Uetake (2020), Mohapatra and Zhang (2024), Qiu (2023),

Dix and Lensman (2025). Whereas they use dynamic structural models, we leverage the

granularity of our data—which cannot be fully accommodated in dynamic oligopoly models

due to computational limitations—by keeping our framework as simple as possible.

2 Conceptual Framework

This section explains our approach to quantifying the benefits and costs of innovations,

clarifying our accounting framework before introducing data and econometrics.

Setting. For each of N oligopolistic firms (indexed by f), we observe its product portfolio

Jf,t and production technology Cf,t at two different points in time; before (t = 0) and

after (t = 1) innovations. We also know the demand system, the firms’ variable-profit

functions, their competitive conduct, and the fixed cost FCf of investment in their respective

innovations.

We use the following “two-period model” as an accounting framework. We put the word

“model” in quotation marks because we do not intend to solve it for any equilibrium of
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the overall (unspecified) investment game, focusing instead on the measurement of realized

returns in the data. We discuss this modeling choice at the end of this section.

At t = 0, each firm is endowed with an initial set Jf,0 of differentiated products and

an initial production technology (a set of cost functions Cf,0 = {Cj,0}j∈Jf,0
, where j is an

index for products). Each firm can pay FCf to improve their products and processes from

(Jf,0, Cf,0) to (Jf,1, Cf,1). Because we are interested in comparing the outcomes with and

without all/only innovations, we restrict our attention to only two actions, af ∈ {0, 1},
where af = 0 means not investing in any improvements, and af = 1 is investing in all of the

actual innovations in the data.

In each period, the firms observe the profile of all products and technologies, Jt =⊔N
f=1 Jf,t and Ct =

⊔N
f=1 Cf,t, and participate in spot-market competition (the set of all

products is a disjoint union of all firms’ products because we regard firm identity as a product

characteristic). If their competitive conduct is Bertrand competition, firms independently

set prices pf,t = (pj,t)j∈Jf,t
to maximize their respective profits, πf,t =

∑
j∈Jf,t

πj,t; otherwise,

they charge some other prices (to be specified in section 5.3). The profit from each product

is πj,t = (pj,t − cj,t) × qj,t, where cj,t is the cost of producing j given technology Cf,t and

qj,t = Dj(pt;Jt) is the quantity demanded of product j, which is a function of the prices

of all available products, pt = (pj,t)j∈Jt , and their characteristics (to be specified in section

5.1).

Firm-Level Gains. Let J−f,t and C−f,t denote all non-f firms’ products and technologies,

respectively. Given all rivals’ innovations (af ′ = 1 for all f ′ ̸= f), firm f ’s gain from

innovation (af = 1) is

∆πf = πf,1(af = 1, a−f = 1)− πf,1(af = 0, a−f = 1)− FCf

= πf (Jf,1, Cf,1|J−f,1, C−f,1)− πf (Jf,0, Cf,0|J−f,1, C−f,1)− FCf , (1)

where a−f = 1 means af ′ = 1 for all f ′ ̸= f . The first equation defines firm f ’s gain relative

to its unilateral deviation (af = 0) from the observed action. The second equation makes

the dependence of πf,t on (Jt, Ct) explicit.
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Industry-Wide Gains. We consider two measures of industry-wide gains. One sums the

firm-level gains across firms,

SII =
N∑

f=1

∆πf , (2)

which we refer to as the sum of individual incentives (SII). The other compares producer

surplus (PS), PSt =
∑N

f=1 πf (Jt, Ct), with and without innovations net of fixed costs:

ICI = ∆PS−
N∑

f=1

FCf = (PS1−PS0)−
N∑

f=1

FCf = PS(J1, C1)−PS(J0, C0)−
N∑

f=1

FCf . (3)

It measures the extent to which the industry as a whole benefited from all investments.

Hence, we call it the industry’s collective incentive (ICI).

Total/Social Gains. We measure total (social) gains from innovations as follows. The

demand system, production technology, and the mode of competition co-determine the prices,

sales quantities, and buyer surplus (BS) in spot-market equilibrium as functions of (Jt, Ct).
Hence, the impact of all innovations on BS is

∆BS = BS1 −BS0 = BS(J1, C1)−BS(J0, C0), (4)

and the social gain in total surplus (TS) is

∆TS = ∆PS +∆BS. (5)

Product and Process Innovations. So far, we have treated all kinds of innovations as

a bundle, but we can isolate the contributions of specific innovations as well. For example,

the impact of product innovation is identified by the comparison of outcomes under (J1, C1)
and (J0, C1). Likewise, the impact of process innovation can be measured by comparing

outcomes under (J1, C1) and (J1, C0). We explain further details of innovations in section

3.2.

Effects of Mergers. So far, we have assumed the profile of N firms and their product

ownership structure, O, is fixed.3 In section 7, we alter them to simulate the effects of
3Ownership structure O is the partitioning of all products across firms. We introduce this notation for

expositional convenience, even though it is slightly redundant (we have already defined Jf,t for each firm).
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mergers. Consider a hypothetical merger between firms f and f ′′ to create the merged entity

f ′ at the beginning of t = 0. The number of firms decreases from N to N − 1. Product

ownership changes from O to O′, where O′ encapsulates two changes: (i) Jf,t = Jf ′′,t = ∅
for all t, and (ii) Jf ′,t = Jf,t

⊔
Jf ′′,t for all t. In words, (i) the product portfolios of the

merging parties become empty, and (ii) the merged entity inherits all of their products in all

time periods. Correspondingly, we assume the merged entity inherits all of their fabs and

cost functions: Cf ′,t = Cf,t
⊔

Cf ′′,t for all t. Its profit is πf ′,t =
∑

j∈Jf ′,t
πj,t. The combined

cost of innovation is FCf ′ = FCf + FCf ′′ . In short, we model a merger as a combination

of two product portfolios, their associated cost functions, two sets of innovations, and their

fixed costs. We do not assume any additional changes in marginal costs or fixed costs.

The effect of ownership change O → O′ on the merging firms’ gains is

∆2πf ′(O′, O) = ∆πf ′(O′)− (∆πf (O) + ∆πf ′′(O)) , (6)

where the symbol ∆2 refers to a “change of change” (i.e., how the merger changes ∆πfs,

which are themselves the changes in πfs due to the firms’ own innovations). The effect on

non-merging firm f ′′′ is simply

∆2πf ′′′(O′, O) = ∆πf ′′′(O′)−∆πf ′′′(O). (7)

Hence, the effect of the merger on all firms’ incentives to innovate (SII) is

∆SII(O′, O) =
N−1∑
f=1

∆πf (O
′)−

N∑
f=1

∆πf (O) =
N−1∑
f=1

∆2πf (O
′, O). (8)

Static or Dynamic Framework? Despite its simplicity, this static framework is suitable

for our task. Dynamic oligopoly models might appear to offer an attractive alternative, but

their main appeal is the ability to simulate counterfactual histories of investments. The goal

of this paper is to quantify the realized returns on actual investments in the data, with as

much detail about various types of innovations as possible.4 Our accounting framework is

sufficient for these purposes and can accommodate the rich details in our data.
4The combinatorial nature of fab investments (e.g., a firm can potentially invest in multiple fabs of

different technological generations in each period) makes the set of possible strategies in a dynamic model
extremely large. For computational feasibility, such a model would have to forgo the details of products and
fabs in the data.
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3 Institutional Background and Data

This section provides background information on the LCD industry and data.

3.1 Industry Background

Main Players and Key Events. Several Japanese firms, such as Sharp, Seiko, and

Hitachi, pioneered the development and commercialization of LCD technology since the

1970s, but two Korean manufacturers, Samsung and LG, rapidly caught up and expanded

market shares in the late 1990s. In response to these low-cost rivals, Japanese firms recruited

Taiwanese firms as contract manufacturers with even lower costs. However, the latter soon

became self-sufficient and marginalized the Japanese firms by 2001, the first year of our main

dataset.

The dot-com bust in 2001 dampened the demand for many IT products, including note-

book PCs and desktop monitors, the two main applications of LCD panels at the time. The

resulting price decreases motivated AU Optronics (AUO), the largest Taiwanese producer,

to organize a price-fixing scheme with three other Taiwanese firms (CMO, CPT, and HS)

and the two Korean firms. The “crystal cartel” had monthly price-targeting meetings from

October 2001 to February 2006, when Samsung and LG applied for corporate leniency pro-

grams at the US Department of Justice and the European Commission. Meanwhile, LCD

TVs became mainstream household products since the mid to late 2000s.

Most of the Japanese firms exited these (large-area display) markets by the end of the

2000s.5 The only exception was Sharp, which continued to invest in new-generation fabs.

Mainland Chinese firms started entering low-end product categories, sometimes by purchas-

ing used equipment from Japan, but their market shares were negligible throughout the

2000s. Our analysis will focus on the seven major firms (two Korean, four Taiwanese, and

one Japanese) and treat the rest as a competitive fringe.

Supply Chains. LCD panels contain many different components and materials, including

sheet glass, color filters, polarizer films, backlights, and liquid crystal. Their suppliers were

mostly Japanese firms in the materials, fine chemicals, and electronic device industries. The

suppliers of fab equipment were engineering firms from Japan as well.
5The large-area displays are the cutting-edge part of the market, defined by the diagonal length of 10

inches or larger. We do not study the markets for smaller panels, which are more fragmented and populated
by many fringe firms with older, smaller fabs.
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The buyers of LCD panels included many final assemblers of notebook PCs, desktop mon-

itors, and TVs around the world, as well as their intermediaries and contract manufacturers,

which were typically based in Taiwan or mainland China. The top brand-name buyers in the

2000s were the following: notebooks (HP, Dell, Acer, Lenovo, and Apple), monitors (Dell,

HP, Acer), and TVs (Samsung, LG, Sony, Sharp, and Panasonic). Within each segment, the

largest firm’s market share was 18%–20%, and the five-firm concentration ratio (CR5) was

40%–60%. The Herfindahl-Hirschman index (HHI) was below 1,000.

Most global brands did not buy panels directly but through contract manufacturers—

original design/equipment manufacturers (ODMs/OEMs)—which assembled electronics on

their behalf, buying components and integrating them into final products.6 No system-

atic data exist on ODMs/OEMs or their interactions with panel makers; exactly how the

bargaining played out between panel makers, ODMs/OEMs, and brands is unclear.7

Despite the prevalence of contract manufacturing, some firms chose to vertically inte-

grate. Samsung and LG manufactured their own TVs, and virtually all Japanese firms were

part of conglomerates. Curiously, most of them maintained supply relationships with mul-

tiple external parties and did not engage in exclusive dealing with in-house partners. Both

Samsung Display and LG Display operated as independent subsidiaries of their respective

parent conglomerates.

Trade Costs. The costs of transportation and tariffs were relatively low for LCD panels.

IT products and their components generally have high value-to-weight ratios. The supply

chains of LCD panels and their final goods were spatially concentrated in East Asia. More-

over, Japan, Korea, Taiwan, the United States, and the European Union (EU) were among

the early signatories of the Information Technology Agreement (ITA) at the World Trade

Organization (WTO), which had eliminated tariffs on most IT hardware—including LCD

panels, PCs, and monitors—by January 1, 2000. China joined the ITA in 2003 as well.

Trade costs played a greater role in the final-good markets, in which products needed to

be shipped to other regions. The average transport and insurance costs between East Asia
6Taiwanese ODMs manufactured over 90% of the world’s notebook PCs in the 2000s; key players were

Quanta, Compal, Wistron, Inventec, Pegatron, and Foxconn. For monitors, notable ODMs were TPV,
Innolux, Foxconn, Wistron, Qisda, Compal, Lite-On, and Proview. For LCD TVs, TPV, AmTRAN, Quanta,
Proview, Vestel, Wistron, Jabil, Foxconn, Changhong, and Skyworth had a significant presence.

7Contractual details, such as duration and volume discounts, are also unclear. Long-term contracts, spot-
market transactions, and procurement auctions were known to coexist. However, given the rapid decline
of LCD prices, any quantity pre-commitment at fixed prices beyond 1–3 months would seem unsustainable
unless contractual prices were allowed to change based on spot prices.
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(as origins) and the OECD countries (as destinations) were 4%–6% of the value of goods in

the 2000s.8 Additionally, LCD TVs were subject to some import tariffs in many countries

(e.g., 3.9% in the United States) because the ITA did not cover consumer electronics.

Government Support. The types of government support varied across countries. In

Japan, some of the government-supported R&D consortia covered displays, and certain re-

gional governments facilitated land acquisitions to attract fab investments. The governments

of Korea and Taiwan also provided indirect support, such as R&D funding, infrastructure

improvements (e.g., roads, power, and water), and tax breaks. However, we found no evi-

dence on direct subsidies for fab equipment or manufacturing costs in these countries. More

aggressive direct subsidies became more prominent in China in the 2010s. Some reports

allege that government subsidies covered 50%–70% of investment costs for display manufac-

turers.9 These subsidies and the rise of Chinese firms in the 2010s are outside the scope of

this paper (our main dataset ends in 2011).

3.2 Production Technology

Fabrication Plants and Equipment. The production technology is capital-intensive—

firms have to spend billions of dollars to purchase fab equipment. The machines were de-

veloped, manufactured, and sold by several engineering firms in Japan. It also required

knowledge and experience, as production engineers had to tune each machine to improve

“yield,” the fraction of products without defects. Once these physical requirements were

satisfied, the costs of basic inputs such as labor and electricity were critical for the firm’s

competitiveness, as the exit of (relatively high-cost) Japanese firms illustrated.

Hundreds of physically differentiated products appear in our data, but all of them could

in principle be produced at a single fab, as long as their basic physical requirements are met

(i.e., fab equipment must be capable of handling input sheet glass at least as large as the

output panel size. Thus, the technological generation of a fab is defined by the size of the

input glass. The most advanced fabs in 2001:Q1 used fourth-generation (4G) equipment or

its variant (4.5G), which processed 730mm×920mm input glass and produced up to 40-inch

panels. The frontier technology gradually shifted to 10G (2,850mm×3,250mm) by 2011:Q4.
8The International Transport and Insurance Costs of Merchandise Trade (ITIC) database of the OECD.
9See, for example, this article by Reuters (link)
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Product and Process Innovations. We define and categorize innovations in LCD pro-

duction by following Schumpeter’s (1934) classical definition of economic innovation as a

“new combination of productive means” (page 66), regardless of whether it relies on new

scientific discoveries or patented inventions. We have chosen this economic—rather than sci-

entific or legal—definition for its direct relevance to welfare analysis, as well as its capability

to quantify and compare various types of innovations in dollar values.

Under this umbrella definition, we focus on two categories: (i) “the introduction of a

new good or of a new quality of a good,” which we refer to as product innovation, and (ii)

“the introduction of a new method of production,” which we refer to as process innovation.

Empirically, we categorize all goods that were not available in 2001:Q1 (our initial sample

period) as new goods. Similarly, we categorize any changes to the LCD production process

that systematically improved productivity (relative to a brand new fab in 2001:Q1) as process

innovations, including the use of new-generation fab equipment (“vintage capital”) and the

yield improvement through experimentation (“learning by doing”).

An important feature of LCD innovations is that an investment in new-generation fabs

can deliver (a subset of) both product and process innovations. New products with larger

panels required larger input glass sheets, which only more advanced fab equipment could

handle. A 42-inch TV could not be manufactured at a 4G fab, for example. More advanced

fabs also enjoyed lower manufacturing costs per product, because the fixed cost of processing

a larger input glass did not increase as much as the surface area of output panels. That is,

slicing a single sheet of large input glass into many output panels is cheaper than producing

them from many smaller sheets. For these reasons, our analyses from section 6.3 onward

treat each new generation of fab technology as a bundle of (A) larger new products and (B)

cost reductions for all products due to vintage-capital effects.

3.3 Data

Our main data source is Display Search, a specialized data provider for flat display panels.

Their information is widely used as a key reference by both buyers and sellers of LCD panels

in the global wholesale market. The original dataset consists of three components: sales,

costs, and investments.

Database 1: Prices, Quantities, and Product Characteristics. The average sales

price and total shipment volume are recorded quarterly between 2001:Q1 and 2011:Q4 at the
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product level.10 Each product is defined as a combination of (i) supplier, (ii) application, (iii)

size, (iv) resolution, and (v) backlight—for example, LG’s panel for notebooks, 14.1 inches,

1, 280× 800 pixels, and light-emitting diode (LED) backlights. The total number of unique

products is 1,081. Even if we ignore supplier identity (i) and exclusively focus on physical

dimensions (ii)–(v), as many as 302 products appear on record.

Database 2: Manufacturing Costs. The second database contains the average unit

cost of manufacturing each product at each fab on a quarterly frequency between 2000:Q2

and 2016:Q4. We constructed this database from the engineering cost model (and the list

of all fabs and their technological specifications) from Display Search. Their cost model is

designed to replicate the cost of any product at any fab in each period. As inputs, the user

specifies the characteristics of the product, fab, and firm.11 The cost model calculates the

amount of materials, components, intermediate inputs, and hours worked that are needed to

make the product, based on the specific equipment of the fab and the fab-generation-specific

patterns of yield improvements over time.12 These input requirements are combined with

data on input prices to calculate item-by-item expenditures.13 The output of the cost model

is a collection of spreadsheets, each of which corresponds to a specific pair of a fab and a

product, with average unit cost in each period and its breakdown across rows, and time

periods across columns. These cost estimates at the level of product-fab-firm-quarter are

merged with Database 1 by finding the lowest-cost fab within each product-firm-quarter and

matching it with the product-firm-quarter observation in the sales data. Thus, our cost data

rely on the precision of their engineering model and its underlying data.
10Transaction-level prices and quantities are not available, which precludes the analysis of buyer-specific

discounts or other contractual details.
11The user specifies the following characteristics: (1) the calendar year-quarter in which the fab started

mass production, (2) the size of the input glass that its equipment can handle (i.e., the fab’s technological
generation), (3) the application, size, resolution, and backlight of the output LCD panel, (4) the firm’s
“tier” ∈ {1, 2, 3}, which captures its level of technological sophistication as well as bargaining power in input
procurement, (5) whether the fab uses the one-drop-fill (ODF) method of combining glass sheets with liquid
crystal, (6) whether color filters are manufactured in-house or purchased from external suppliers, (7) the
number of work shifts, (8) capacity utilization, and (9) the share of selling, general, and administrative
(SG&A) expenses in overall costs. The method of depreciation accounting can also be specified, but we did
not include depreciation as part of variable costs.

12The staff analysts visit all fabs every year, check capacity utilization and yield improvements, and
aggregate their estimates at the level of fab generations.

13The prices of all key materials and components for LCD panels are recorded, including sheet glass,
sputtering targets, liquid crystal, color filters, polarizer films, backlights, printed circuit boards, and driver
integrated circuits (see Appendix A.2 for details). The database also includes wage rates as well as the costs
of water, electricity, and other intermediate inputs in Japan, Korea, Taiwan, and mainland China.
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Database 3: Investment in New Fabs. The list of fabs that we mentioned above

contains a comprehensive record of all major firms’ investments in new fabs at a monthly

frequency between December 1994 and July 2024. For each of the 572 fabs, we observe (a)

the technological generation of its manufacturing equipment, (b) production capacity14, and

(c) the timing of investment. Display Search also collected (d) the typical dollar cost of fab

equipment and building for each generation. Based on (a), (b), and (d), we calculated the

cost of each fab investment. The timing record (c) includes time stamps of monthly frequency

at three stages of fab investments: equipment purchase order, delivery and installation, and

mass production ramp. The average wait time between order and full-scale production is

approximately 12 months. We recognize the cost of fab investment when it starts volume

production (mass production ramp).15

4 Descriptive Evidence

This section describes key data patterns. Sections 4.1 and 4.2 present descriptive evidence

on product innovations, as well as basic facts about outputs and market structure. Sections

4.3 and 4.4 do the same for process innovations, exploiting our detailed cost data. Section

4.5 shows the producers’ revenues, profits, and cash flow (net of fab investments). Section

4.6 summarizes additional findings about the demand side of the market.

4.1 Outputs, Number of Products, and Market Structure

Figure 2 summarizes outputs, the number of products, and market structure. Panel A

shows that notebook PC was the main application in 2001 in terms of shipment volume, but

desktop monitors surpassed notebooks in 2002 as LCD monitors started replacing cathode

ray tube (CRT) monitors. LCD TVs became popular first in East Asia around 2004 and

then in North America and the rest of the world since 2007. The Great Recession (2008:Q4–

2009:Q2) temporarily reduced the demand for all applications. Given the relative novelty

of LCD panels, most of the purchases of LCD monitors and LCD TVs were replacing their

CRT counterparts, not previously purchased LCD products (see section 4.6).
14Production capacity is measured in the increment of 30,000 input glass sheets per calendar quarter.
15An alternative is to use accrual-based depreciation accounting, spread the cost of capital expenditure

across 4–6 years, and recognize it as part of the unit cost of manufacturing. However, accounting rules vary
across countries and would add ambiguity to the measure of manufacturing cost.
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Figure 2: Outputs, Number of Products, and Market Structure

(A) Unit Shipments (B) Number of Products

(C) Number of Firms (D) Concentration of Market Shares

Note: See the main text for definitions and other details.

Panel B reports the steady increase in the number of products, which we split into three

categories: initial products, larger new products, and other new products. The “initial

products” are those available in 2001:Q1, the largest of which were 15.7-inch notebooks, 24-

inch monitors, and 28-inch TVs. We classify any larger products as “larger new products.”

Meanwhile, “other new products” represent other new combinations of size, resolution, and

backlight type.16

Panel C shows that the total number of firms (dotted line) fluctuated between 14 and

20, with a peak around 2005. Many of them were Japanese electronics firms that became

marginalized by lower-cost rivals from Korea and Taiwan. The dashed and solid lines count

only firms with market shares above 5% and 10%, respectively, typically between 4 and 6.

Panel D captures the gradual increase of market-share concentration measured by the

HHIs based on revenues and unit shipments, respectively. The initial increase in 2001–2005

reflects the decline and exit of fringe firms; the rapid increase in 2008–2009 was driven by

the growing dominance of Samsung and LG, which expanded market shares during and
16The number of available products roughly tripled from 2001 to 2011, with rapid turnovers.
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after the Great Recession at the expense of weaker rivals in Taiwan. With the HHIs in the

range of 1,000–2,000, the LCD industry in 2001–2011 was moderately concentrated—more

concentrated than any of the three downstream markets (see section 2.1).

4.2 Product Characteristics

Figure 3 provides further details of product innovations by plotting average product char-

acteristics over time. Panel A shows that the average size of LCD TVs grew from 15 to 35

inches, while the average monitor size grew from 15 to 21 inches. The change for notebooks

was less dramatic (from 13.6 to 14.8 inches).

Figure 3: Product Characteristics

(A) Size (B) Resolution (C) LED Backlight

Note: Panel A and B display shipment-volume-weighted average characteristics by application. Panel C plots the

percentage of panels with LED backlights (instead of CCFL backlights) in the total shipments.

Panel B shows that the improvements in notebook panels occurred mostly in terms of

picture quality: the average resolution increased from 95 to 109 pixels per inch (PPI). The

average monitor resolution grew more modestly from 87 to 93 PPI. TVs recorded a slight

decrease from 60 to 56 PPI because a larger panel size mechanically reduces PPI unless the

number of pixels increases at the same rate.17

Panel C plots the percentage of LCD panels with LED backlights. Notebooks were the

first to switch to LED backlights from cold cathode fluorescent lamps (CCFL) ones, because

LEDs’ lower power consumption was essential for mobile devices. TVs were slower, but 55%

of them used LED backlights in 2011:Q4. The LED adoption rate among monitors was 48%

in 2011:Q4.

In summary, LCD panels for all applications exhibited improvements in some or all

observed characteristics. Whether and how much of these product innovations contributed
17For example, a 15-inch panel with 1,024×768 pixels (a typical configuration in 2001:Q1) contains 85

pixels per square inch, whereas a 42-inch panel with 1,920×1,080 pixels (typical in 2011:Q4) has only 52 PPI
— despite containing more than twice as many pixels overall — because its surface area is much larger.
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to economic surplus is the question that we seek to answer in sections 5 and 6.

4.3 Prices and Manufacturing Costs

Figure 4 displays average unit prices and manufacturing costs by application. Between 2001

and 2011, average prices dropped by $232 (80%) for notebooks, $584 (86%) for monitors,

and $445 (60%) for TVs. The fact that prices fell while the HHIs increased (Figure 2, Panel

D) and product qualities improved (Figure 3) might appear counterintuitive, but the speed

of cost reduction explains most of these price reductions. The average manufacturing costs

dropped by $125 (73%) for notebooks and $174 (67%) for monitors. In the case of TVs, the

average cost increased in the first two years, during which the volume production of much

larger panels (30 inches and above) started and pushed up costs. Between 2003 and 2011,

the average prices and costs of TVs fell by $288 (50%) and $262 (47%), respectively. Thus,

both prices and costs exhibit secular downward trends over most of the 11 years. However,

in the shorter run, prices moved cyclically while costs did not. The cyclical nature of IT

demand explains this pattern—see Matthews (2005) for a detailed account of “crystal cycles,”

in which small shifts in demand can lead to larger swings in prices.

Figure 4: Prices and Manufacturing Costs

(A) Notebook (B) Monitor (C) TV

Note: Prices and manufacturing costs are averaged across all available products in each calendar quarter.

In terms of markups, the price-cost margin for notebooks and monitors shrank over time

because of three historical developments. First, the crystal cartel engaged in price-fixing

until February 2006 (see section 2.1). Second, the Great Recession reduced demand in

2008:Q4–2009:Q2, with some lingering effects. Third, none of the major firms exited the

industry; some of them kept building new fabs despite the recession, adding excess capacity

and putting downward pressure on prices.

The evolution of markups was more complicated in the TV market. The initial shift

to larger sizes in 2002–2003 temporarily squeezed markups, but in 2004, the first boom in
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demand (in East Asia) increased prices and markups. Another price upswing in 2007 also

coincides with the boom in North America and Western Europe.

Overall, neither product nor process innovation seems to have improved markups in the

long run, even though newer products and processes did tend to command higher markups

in the short run (see Appendix A.1 for a comparison of markups across technological gener-

ations). Most of the cost reductions were passed on to the wholesale prices, which in turn

were passed on to retail prices (see section 4.6).

4.4 Determinants of Manufacturing Costs

What drove these rapid cost reductions? We need a parsimonious cost function to simulate

the absence of process innovations in section 6. We quantify the relationships between cost

and its determinants by running regressions of the following form: the cost of manufacturing

product j in fab k (of firm f) in year-quarter t is

ln cjkt =
∑
g

θg1{genk = g}+
∑
a

θa1{agekt = a}+ θodfodfk︸ ︷︷ ︸
process innovations

+ θcfcfkt

+
∑
l

θl1{capakt = l}+ δ̃t + δ̃f(k) + δ̃j︸ ︷︷ ︸
time, firm, & product dummies

+ ηjkt, (9)

where 1{genk = g}, 1{agekt = a}, odfk, cfkt, and 1{capakt = l} are indicators for generation-

g fab, age-a fab, the ODF method,18 in-house manufacturing of color filters, and capacity

utilization (bin l in a discretized grid with 5% intervals), respectively. The dummy variables

δ̃t, δ̃f(k), and δ̃j are fixed effects for time, firms, and products, respectively. The error term

ηjkt reflects measurement errors. The coefficients θg, θa, θodf , θcf , and θl represent the effects

of the first five factors, of which θg, θa, and θodf are the changes in physical productivity that

directly relate to the firm’s fab-investment decisions.19 These parameters will be manipulated

to simulate costs in the absence of process innovations. (e.g., by setting θg = 0) in section

6.2.
18This method improved productivity by reducing the time and steps required for the “cell” process as well

as the amount of wasted liquid crystal. It was first introduced by Hitachi Industries, a leading equipment
manufacturer, in 2002 and was commercialized in 5G fabs. See Akabane (2014) for technical details.

19By contrast, θcf merely reflects the internalization of the rent of an upstream industry, not a physical
improvement, and θl is a scale economy within a given process. The time fixed effects δ̃t reflect changes in
the costs of materials and components, some of which can be attributed to the upstream firms’ innovations.
Other fixed effects do not vary over time.
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Table 1 reports the estimates. Column 1 uses a linear specification for all variables,

whereas column 2 uses a full set of dummies as shown in (9). Both specifications achieve

extremely high fit with the adjusted R2 of 0.971 and 0.99, respectively. Recall that we gener-

ated our cost data from Display Search’s engineering cost model. Hence, we can control for

literally all factors that go into this model. Our regressions are effectively reverse-engineering

their engineering model with relatively simple parameterization.

Table 1: Determinants of Manufacturing Cost

Specification (1) (2)
Estimate Coeff. Std. err. Coeff. Std. err.
A. Fab specs
Tech. gen. −0.045 (0.000) − (−)
Fab age −0.003 (0.000) − (−)

ODF method (θodf ) −0.102 (0.001) −0.005 (0.001)
In-house CF (θcf ) −0.025 (0.001) 0.003 (0.001)
Capa. util. −0.178 (0.003) − (−)
B. Firm specs
Tier-1 −0.192 (0.003) −0.081 (0.002)
Korea −0.101 (0.001) − (−)
Taiwan −0.280 (0.003) − (−)
C. Product specs
Surface area 0.926 (0.001) − (−)
Monitor −0.106 (0.001) − (−)
TV 0.091 (0.002) − (−)
LED (edge) 0.111 (0.001) − (−)
LED (direct) −0.063 (0.001) − (−)
D. Time and others
Time −0.034 (0.000) − (−)
Constant 14.292 (0.012) 5.354 (0.015)
Tech. gen. dummy (θg) No Yes
Fab age dummy (θa) No Yes
Capa. util. dummy (θc) No Yes
Firm dummy (δ̃f(k)) No Yes
Product dummy (δ̃j) No Yes
Time dummy (δ̃t) No Yes
Number of obs. 340,471 340,471
R2 0.971 0.990
Adjusted R2 0.971 0.990

Note: The dependent variable is the natural logarithm of the unit cash cost of producing an LCD panel. Standard
errors are in parentheses. See the main text for the explanation of the regressors. All estimates are based on the
ordinary least squares (OLS) regressions and are meant to summarize the engineering cost model underlying the data.
See Figure 5 for most of the coefficient estimates for column 2.

Linear Estimates. The linear estimates in column 1 of Table 1 portrays basic patterns.

The coefficients on the fab-level characteristics (section A) suggest: (i) each new generation

of fab equipment reduces cost by |e−0.045 − 1| × 100 = 4.4% (the same formula is used to

translate all other coefficient estimates into percentage changes in the following); (ii) an
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extra calendar quarter of operation reduces cost by 0.3%; (iii) the ODF method reduces

cost by 9.7%; (iv) the in-house manufacturing of color filters reduces cost by 2.5%; and (v)

increasing capacity utilization from 0% to 100% reduces cost by 16.3%.

Section B shows the effects of firm-level characteristics. Tier-1 firms, Korean firms, and

Taiwanese firms enjoy significant cost advantages relative to tier-2 Japanese firms (omitted

category). Tier-1 designation reflects both technological sophistication and bargaining power

in input procurement, and is given to several firms in Japan, as well as Samsung and LG,

but not Taiwanese or Chinese firms. Hence, the cost gap between these Korean firms and

tier-2 Japanese firms is |e−0.192−0.101 − 1|×100 = 25.4%, whereas Taiwanese firms’ advantage

is slightly smaller at |e−0.280 − 1| × 100 = 24.4%.

Section C reports the effects of product characteristics. The surface area of a display

is measured in the natural logarithm of m2; hence, the coefficient estimate of 0.926 means

that a 1% increase in panel size leads to only a 0.93% increase in cost. Monitors are 10.1%

cheaper than notebooks (omitted category), whereas TVs are 9% costlier. Relative to CCFL

(omitted category), LED backlights can be either costlier or cheaper depending on their

layout (“edge” or “direct”).

In section D, the time trend reduces costs by |e−0.034 − 1| × 100 = 3.3% per quarter, or

|e−0.034×43 − 1| × 100 = 76.8% over the entire sample period. As we control for all user-

specified inputs into the engineering cost model, the only remaining variation across time is

the steady decrease of input prices, which we scrutinize in Appendix A.2.

Nonlinear Estimates. Column 2 of Table 1 uses a full set of dummies, the estimates of

which we visualize in Figure 5. Panel A reports the cost by generation. Productivity effects

are heterogeneous across vintages. For example, the differences between 4G and 4.5G, 5G

and 5.5G, and 7G and 8G are relatively small, whereas 5G fabs can produce a given panel

at |e−0.13 − 1| × 100 = 12.2% lower cost than 4G fabs. The most advanced (8.5G–10G) fabs

are 24.8% more efficient than 4G fabs.

Panel B shows the age effect by quarter. The learning curve is steep in the first few

quarters of volume production (e.g., the cost is 15.3% lower in quarter 3 than in quarter 1).

Yield improvement continues until quarter 26 (year seven), at which point the cost is 25.2%

lower than in quarter 1. Subsequently, physical depreciation (wear and tear) dominates the

positive impact of learning by doing.20

20The shape of the experience curve—including the upward-sloping part—is common across all vintages,
and hence is not an artifact of the right-censoring of data (i.e., the sample period ends before newer-vintage
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Figure 5: How Unit Cost Declines with Vintage, Experience, Capacity Utilization, and Time

(A) Capital Vintage (B) Experience

(C) Capacity Utilization (D) Calendar Time

Note: These graphs visualize our preferred estimates of the nonlinear effects of selected factors on column 4 of Table

1. The solid lines with markers plot coefficient estimates of the dummy variables for (a) technological generations of

manufacturing equipment, (b) fab’s age since the beginning of volume production, (c) capacity-utilization bins, and

(d) calendar quarters, respectively. The dashed lines represent their 95% confidence intervals.

Panel C shows how specific levels of capacity utilization affect productivity. For example,

60%–75% utilization conveys 5%–7% cost advantage over the baseline rate of below 60%

(omitted category). The benefit is even larger (11%–13%) if a fab operates in the 75%–100%

utilization range.21 Most of the fabs operated above 75% in our data—the mean, median,

and standard deviation of capacity utilization are 83%, 85%, and 10%, respectively—but

never reached 100%.

Panel D shows the time fixed effects. Relatively small changes occurred between 2000

and 2004, but the subsequent improvements were substantial. Overall, cost decreased by

fabs gain experience). The upward-sloping part is intriguing but unlikely to affect the overall competitive
landscape because a six-year-old fab is officially obsolete (i.e., fully depreciated in terms of financial account-
ing) and because most of the major firms kept adding newer-vintage fabs every 1–2 years—their firm-level
competitiveness depended on the latest fabs, not older ones.

21These discrete jumps arise from the lumpiness of worker-rotation schedules. Machines run for 24 hours
a day. Meanwhile, four groups of workers take turns to perform three 8-hour shifts per day (daytime, night,
and midnight shifts). The fourth shift is a break.
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approximately |e−1.284 − 1| × 100 = 72.3% between 2001:Q1 and 2011:Q4.

Summary. These findings clarify the major productivity effects of both vintage capital

(new generations of fabs that embody new technologies) and learning by doing (better use of

physical assets via yield engineering). Each of these process improvements contributed to the

reduction of manufacturing costs by approximately 25%–29%. By contrast, scale economy

in terms of capacity utilization played only a minor role because most of the fabs operated

above 75% of capacity, and unit cost varied by at most 2% within that range.

Appendix A.2 presents concrete examples of cost reductions at 4.5G, 5G, and 7G fabs of

Samsung, as well as their detailed breakdown for a 17-inch monitor panel. We also report

the prices of key materials and components.

4.5 Revenues, Variable Profits, and Cash Flow

Figure 6 compares industry-wide revenues (panel A) and variable profits (panel B) by ap-

plication. Revenue growth for notebooks and monitors was slow before the recession and

stagnant thereafter, whereas TVs recorded faster growth and became the largest application

by 2006. However, revenue growth did not necessarily translate into profit growth because

price-cost margins shrank (see section 4.3). Aside from the steady rise of TVs, cyclical ups

and downs dominate the time series of profits. These patterns suggest that much of the

gains from innovations were passed on to the downstream industries, which in turn seemed

to transmit most of the benefits to final users (see section 4.8).

Figure 6: Revenues and Variable Profits

(A) Revenues (B) Variable Profits

Note: For each product, revenue equals total unit shipment times average unit price, and variable profit equals total

unit shipment times price-cost margin (i.e., average unit price minus average unit cost).
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Figure 7 summarizes the net profitability of the LCD business. Panel A compares the

total costs of fab investments (see Appendix A.3 for details) with the total variable profits

from all applications (i.e., the sum of profits shown in Panel B of Figure 6). These profits

and costs were roughly proportional to each other between 2001:Q1 and 2004:Q3. The

situation changed in 2004:Q4–2005:Q2, when many new fabs of 5G–7G technologies started

production. The industry-wide investment cost more than doubled during this period, and

the intensified investment race continued even after the Great Recession. Panel B plots net

cash flow, which we define as the difference between total variable profits and investment

costs.22 The industry-wide cash flow was typically between −$1 billion and −$6 billion per

quarter. It was negative in 23 out of the 29 quarters since 2004:Q4.

Figure 7: Variable Profit, Investment Cost, and Cash Flow

(A) Variable Profit and Investment Cost (B) Cash Flow

Note: In Panel A, variable profit is the sum of variable profits in Figure 6 (Panel B) across all applications. Investment

cost is the sum of costs for buildings and equipment for all fabs in Figure 12 and recognized in the month of mass-

production start at each fab. In Panel B, cash flow is the difference between the variable profit and investment cost

in Panel A.

Overall, the LCD industry did not seem to offer lucrative investment opportunities during

our sample period. The mostly negative cash flow implies a massively negative return on

investment for some producers. Section 6 presents a more formal analysis of their returns

on investments, based on the demand and supply model that we estimate in section 5.

4.6 Other Descriptive Evidence

We summarize additional descriptive evidence that relates to the demand side.
22For simplicity, we assume that the cash payments for both revenues and manufacturing costs were settled

in the same quarters as sales were recorded, and that the capital expenditures were paid in cash at the time
of mass production start.
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Pass-Through of Wholesale Prices to Retail Prices. Appendix A.4 investigates the

extent to which the price reductions in LCD panels benefited the final users of LCD products.

Results suggest an almost complete pass-through.

First-Time versus Replacement Purchases. Appendix A.5 examines the relative im-

portance of first-time and replacement purchases of LCD TVs.23 We find that first-time

buyers account for the vast majority of purchases during our sample period.

5 Demand Estimation and Its Implications

We use the data on sales and costs for 2001:Q1–2011:Q4 to estimate a random coefficient

nested logit model of demand for differentiated products (section 5.1). Based on the esti-

mates, we calculate the changes in BS between 2001:Q1 and 2011:Q4, as well as the im-

plications for the price index (section 5.2). We also assess the firms’ competitive/collusive

conduct implied by the combination of the demand estimates and the data on prices and

costs (section 5.3).

5.1 Model and Estimates

The demand for large-area LCD panels is derived from the final-good demand for notebooks,

monitors, and TVs, which we treat as separate markets. Their supply chains involve many

intermediaries, including contract manufacturers, brand names, and wholesale/retail traders

(see section 3.1). We abstract from these details and use a random-coefficient nested-logit

model as a flexible functional form to capture the overall demand-side response to product

prices and qualities. Hence, we have to be careful about the interpretation of the “utility”

function, which we discuss at the end of this subsection.

Model. We define the size Mt of each application market to be the current total population

of the countries that belong to the Organization for Economic Co-operation and Development

(OECD), a club of relatively high-income countries.24 Our results are not sensitive to Mt (see

Appendix B.4) because we include a full set of time dummies in the following. Meanwhile,
23We do not study this issue for notebooks and monitors, because the repurchasing cycle of PCs is known

to be driven by semiconductors and software, not LCD panels.
24We use data from the World Bank on the population and income levels of the OECD member countries

for which complete time series are available. These variables exhibit secular growth trends over time.
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the distributions of average income and geographical locations across countries generate

heterogeneity among buyers.

For exposition, let us tentatively ignore the complexity of the supply chains and assume

each buyer is an individual end-user of the final good. Buyer i’s utility from product j—

defined by characteristics (i)–(v) in section 3.3—in year-quarter t is

uijt = αitpjt +
∑
s

βs
1{sizej = s}+ βr ln ppij + βbledj

+ γf(j) + τt + ξjt + ζist + (1− ρ)εijt, (10)

where pjt is price, 1{sizej = s} is an indicator for size s, ln ppij is picture resolution measured

by the natural logarithm of pixels per square inch (PPI), ledj is a dummy variable for LED-

based backlights, γf(j) and τt are firm and time effects, respectively, ξjt represents unobserved

product quality, and ζist and εijt are buyer-specific preference shocks. We assume that εijt is

i.i.d. Gumbel and that ζist has a unique distribution such that ε∗ijt ≡ ζist + (1− ρ)εijt is also

Gumbel. We normalize the value of the outside good (j = 0) as ui0t = εi0t.25 The coefficients

βs, βr, and βb denote the contributions of size, resolution, and backlight type, respectively.

We incorporate heterogeneity in the price coefficient as αit =
α
yit

× (1 + CFMit), where α

is the baseline price coefficient, yit is the income level of i drawn from the OECD income

distribution at t, and CFMit is the transport cost from East Asia to i’s location.26

Three considerations have led to this specification. First, we try to incorporate the

contributions of lower prices and larger sizes with as much flexibility as possible, because

these are the primary channels through which process and product innovations improve BS,

respectively.27 Second, we include all observed characteristics (and a full set of firm and time
25Previously purchased LCD panels did not play a major role during our sample period. See section 4.6.
26We use the CIF-FOB margin in the ITIC database from the OECD as a measure of transport and

insurance cost, CFMit = (CIFit − FOBit)/CIFit, where CIFit is the value of imports including “cost,
insurance, and freight,” and FOBit is the “free on board” value that does not include any of these costs. See
section 3.1 for other trade costs, including tariffs.

27The specification of αi extends Berry, Levinsohn, and Pakes (1999). Its combination with the size-bin
nests is similar to Brenkers and Verboven (2006). We have also experimented with various specifications
to include an additional random coefficient on the size dimension, including one on sizej as a continuous
variable, as well as random slopes on the size-bin dummies. However, these specifications led to highly
counter-intuitive estimates of both α and βs

i that implied implausibly low price-elasticity and degenerate
heterogeneity in the taste for size. One possibility is that the lack of buyer-level microdata precludes
their identification. Another possibility is that the nearest sizes are not necessarily the closest substitutes
in the current setting because the immediate buyers of LCD panels are downstream manufacturers with
production plans that are not flexible across sizes in the short run. Finally, Grigolon and Verboven (2014)
show that adding random coefficients and nests on multiple product characteristics could lead to imprecise
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dummies) to capture the contributions of product qualities, as well as any other systematic

factors. Third, we have chosen not to include time dummies in ui0t because they do not

seem to be separately identified from τt in our context (see Appendix B.1).

Instrumental Variables. We address the endogeneity concern (that prices pjt and within-

nest market shares might be correlated with unobserved quality ξjt) by using three types

of instrumental variables (IVs): (i) the unit cost of production cjt, (ii) a dummy variable

indicating the firm’s participation in the cartel in 2001:Q4–2006:Q1, and (iii) the measures of

product differentiation proposed by Gandhi and Houde (2025).28 We use the BLP estimation

algorithm in Conlon and Gortmaker’s (2020) PyBLP Python implementation.

The use of the differentiation IVs warrants further discussions in the context of product in-

novations. If the firms could perfectly predict ξjt of potential new products and immediately

start selling them in the same period, the extent of product differentiation would be corre-

lated with ξjt. In our empirical setting, however, larger new products require new-generation

fabs, the preparation of which takes at least 24 months of planning and implementation. Ac-

curate predictions of ξjt eight quarters in advance would seem unrealistic. Hence, we assume

that the firms do not know the realization of future ξjt at the time of investment decisions,

following much of the literature on the estimation of static demand models.

Estimates. Table 2 reports the parameter estimates. All price coefficients are negative,

but their magnitude varies from notebook (more negative) to TV (less negative). The me-

dian own-price elasticities are −6.26 (notebook), −6.10 (monitor), and −8.81 (TV), which

suggest that lower prices significantly increase utility. The values of the nest parameter

are 0.795 (notebook), 0.761 (monitor), and 0.889 (TV), highlighting the importance of size

categories in buyers’ decisions. The size-bin coefficients show that certain sizes, such as 14”–

16” (notebook), 18”–24” (monitor), and 30” and above (TV), are particularly popular. The

coefficients on the two other physical characteristics (βr and βb) are also mostly positive, as

expected. Thus, ample room exists for both process and product innovations to improve BS.

The estimates of γf(j) suggest different firms excel in different applications. AUO (refer-

ence category) is the top firm in notebooks, followed by Samsung, CPT, and LG. LG is the

strongest firm in monitors, followed by Samsung and AUO. The ranking changes again in the

or unreasonable estimates when they are highly correlated with each other.
28We use the default differentiation IVs generated by PyBLP : for every continuous characteristic, sums of

absolute and squared differences (and their interactions), split by within-firm versus rival products.
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Table 2: Demand Estimates

Application Notebook PC Desktop monitor TV
Estimate Coeff. Std. err. Coeff. Std. err. Coeff. Std. err.
Price (α) −109.083 14.601 −93.788 4.305 −35.098 2.176
Size nests (ρ) 0.795 0.026 0.761 0.026 0.889 0.027
Size = 12” (β12) 1.928 0.062 − − − −
Size = 13” (β13) 2.083 0.074 − − − −
Size = 14” (β14) 3.356 0.083 − − 2.104 0.181
Size = 15” (β15) 3.069 0.094 − − − −
Size = 15.4” (β15.4) 3.004 0.089 − − − −
Size = 16” (β16) 3.417 0.112 4.330 0.089 2.968 0.160
Size = 17” (β17) 2.515 0.084 − − − −
Size = 18” (β18) −0.009 0.132 5.320 0.109 2.119 0.180
Size = 20” (β20) − − 6.027 0.135 4.490 0.183
Size = 22” (β22) − − 5.434 0.139 3.789 0.197
Size = 24” (β24) − − 5.165 0.137 3.402 0.185
Size = 26” (β26) − − − − 4.903 0.199
Size = 27” (β27) − − 4.305 0.158 − −
Size = 28” (β28) − − − − 3.511 0.269
Size = 30” (β30) − − − − 4.853 0.256
Size = 32” (β32) − − − − 6.653 0.214
Size = 40” (β40) − − − − 6.403 0.232
Size = 45” (β45) − − − − 6.122 0.237
Size = 50” (β50) − − − − 6.168 0.253
Size = 55” (β55) − − − − 6.216 0.286
Size = 60” (β60) − − − − 4.886 0.351
Size ≥ 65” (β65) − − − − 5.762 0.384
Resolution (βr) 1.064 0.138 1.713 0.160 0.240 0.059
LED (βb) 0.129 0.035 −0.106 0.047 0.364 0.034
Firm = Samsung −0.038 0.046 0.015 0.043 0.105 0.039
Firm = LG −0.082 0.048 0.117 0.038 0.062 0.034
Firm = CMO −0.130 0.053 −0.176 0.044 −0.052 0.041
Firm = AUO − − − − − −
Firm = Sharp −0.393 0.073 −0.213 0.073 −0.045 0.036
Firm = CPT −0.046 0.062 −0.146 0.051 −0.092 0.064
Firm = HS −0.167 0.072 −0.111 0.057 −0.462 0.103
Firm = Others −0.234 0.045 −0.156 0.053 −0.158 0.045
Constant −9.983 0.494 −13.890 0.665 −11.300 0.355
Time dummies Yes Yes Yes
Own elasticity −6.26 −6.10 −8.81
1st-stage R2: price 0.946 0.898 0.921
1st-stage R2: share 0.325 0.273 0.329
337 Number of obs. 4,140 3,374 3,582

Note: The sample period is 2001:Q1–2011:Q4. “Price” is measured in current US dollars. “Size nests” refers to
the nest parameter. The omitted size categories are 11”, 14”, and 12” for notebook, monitor, and TV applications,
respectively. “Resolution” is measured in the natural logarithm of PPI. “LED” is an indicator for LED-based
backlights, where the omitted category is cold cathode fluorescent lamp (CCFL) based ones. AUO is the omitted
category for firm dummies. “Own elasticity” is the median own-price elasticity across all observations within each
application. We report the R2s of the regressions of prices and within-nest market shares on all IVs and other
regressors as “1st-stage R2” to demonstrate their relevance, even though the BLP procedure does not involve first-
stage regressions as in two-stage least squares.

TV market, where Samsung is the leader, followed by LG, AUO, and Sharp. Although the

relative strengths of these firms are broadly consistent with their background (e.g., Taiwan
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is the global hub of notebook production), the magnitude of these effects is much smaller

than that of most other observed characteristics, such as price, size, and resolution.

Interpretations. Before proceeding to the welfare analysis, let us revisit the issue of inter-

pretation. Given that the immediate buyers of LCD panels are mostly contract manufactur-

ers and other intermediaries, we consider three interpretations, of which two are literal and

one is functional. The first interpretation is to literally take (10) as the end-user’s utility,

which is reminiscent of the healthcare literature (e.g., the decision-maker for drug choice is

often modeled as a combination of an individual patient and a physician). As extreme as it

might first appear, our finding of almost complete pass-through (section 4.6) suggests that

the difference between wholesale and retail prices was mostly constant. Such a constant

gap will not bias α, the price coefficient.29 The second interpretation is to take (10) as a

reduced-form of the downstream firms’ expected profit from production lot i, which targets

end-user i (with income yit and location with transport cost τit). This interpretation shares

the spirit of Ciliberto, Moschini, and Perry (2019), where i represents a piece of agricultural

land owned by a farm. The third (and our preferred) interpretation is to focus on the de-

mand system as a whole, and to think of the details of the discrete choice and its underlying

utility simply as part of a flexible functional form. This stance is close to Berry and Haile

(2021) when they say that “deriving demand from a specification of utilities” is “a matter of

convenience rather than necessity” but “can have significant practical advantages” because

“such an approach can represent a demand system for many goods (...) with a relatively

small number of parameters” (page 13). Regardless of the interpretations, we acknowledge

our data limitations (i.e., the details of the downstream supply chains are not recorded),

which preclude the separate identification of consumer surplus and downstream firms’ prof-

its. Hence, we use the term “buyer surplus” (BS) instead of “consumer surplus” when we

describe demand-side benefits.
29An additive retail margin m enters utility as αitm. Because this term is constant across products,

its time-average component is absorbed by the time dummies, while its individual-specific component is
absorbed by the unobserved taste shock. Thus, the wholesale-retail gap does not bias the price coefficient.
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5.2 Changes in Buyer Surplus

We use the estimated demand system to measure changes in BS. The expected surplus for

buyer i from choice set Jt supplied by the industry with cost profile Ct is

E(BSit) =
1

αi

E

[
max
s∈Jt

{uist(Ct)}
]
=

1

αi

ln

(∑
s∈Jt

exp (δist(Ct))

)
, (11)

where

δist(Ct) = (1− ρ) ln

(∑
j∈Jst

exp

(
δijt(Ct)
1− ρ

))
(12)

is the inclusive value for all products in size-nest s, Jst, and δijt(Ct) ≡ uijt(Ct) − ε∗ijt is the

mean utility (recall ε∗ijt is the composite gumbel shock). We write uijt(Ct) to clarify the

dependence of uijt on Ct because it affects pjt, a component of uijt. The change in all buyers’

expected surplus is

∆E(BS) =
∑
i

1

αi

[
ln

(∑
s∈J1

exp (δis1(C1))

)
− ln

(∑
s∈J0

exp (δis0(C0))

)]
, (13)

which is the empirical counterpart to (4) under our demand specification.

Table 3 reports the changes in (13) between 2001:Q1 and 2011:Q4. The total change

across all applications is $25,027 million, of which TVs account for 66%, followed by monitors

(20%) and notebooks (14%). This ranking is consistent with the fact that TVs recorded the

largest revenue growth, followed by monitors and notebooks (section 4.5).

Table 3: Changes in Buyer Surplus

2001:Q1 2011:Q4 Change Contribution
Notebook PC 573 4,140 3,567 14%
Desktop monitor 347 5,222 4,875 20%
TV 36 16,621 16,585 66%
All applications 956 25,983 25,027 100%

Note: All dollar values are in million US dollars per calendar quarter.

Expressed in terms of the cost-of-living (price) index ∆E(BS)
∆E(BS)+p̄1

(equation 1.19 in Trajten-

berg (1989), where p̄1 is the average post-innovation price), this increase in BS is equivalent

to a 99.99999838% reduction in prices, which is reminiscent of Trajtenberg’s finding for com-

puterized tomography (CT) scanners. Appendix B.2 shows that other, more conventional

price indices grossly underestimate its significance.
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Figure 8: Comparison of Actual Price with Theoretical Benchmarks

Note: This graph compares the average price in the data with three theoretical benchmarks: (i) monopoly, (ii)

Bertrand-Nash, and (iii) social planner.

5.3 Implications for Suppliers’ Conduct

These changes in BS illustrate the magnitude of overall economic impact, but a finer de-

composition of the gains from innovations requires a systematic comparison of carefully de-

signed counterfactual simulations. For example, the calculation of surpluses in the absence

of new-generation fabs needs an equilibrium model of demand and supply under imperfect

competition, so that we can recompute the prices of available products in each t that would

have prevailed under the less attractive profiles of products (J̃t) and costs (C̃t). Since we

have already estimated the demand model and the cost functions, the only missing piece is

the specification of the mode of competition between major LCD suppliers in each t.

We empirically assess the extent of market power by comparing the average price in the

data pt with three theoretical benchmarks: (i) monopoly pmo
t , (ii) Bertrand-Nash pbnt , and (iii)

social planner pspt . Figure 8 shows pt was relatively close to pmo
t in 2001:Q1–2004:Q3, which

is broadly consistent with the existence of the cartel in 2001:Q4–2006:Q1.30 Subsequently, pt
fluctuated around pbnt , suggesting that the LCD cartel became less effective in its last several

quarters. Finally, the negative impact of the Great Recession (2008:Q4–2009:Q2) and its

aftermath is evident in the last three years of our data, as pt occasionally touched on pspt .
30Even though the antitrust investigation and litigation determined 2001:Q4 as the official beginning of

the crystal cartel (see section 3.1), an expert report by Bernheim (2011) suggests the possibility that some
price-fixing attempts date back to earlier periods. Likewise, the effectiveness of the cartel appears to decline
before its formal end.
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The main takeaway is that the monopoly and Bertrand conduct are reasonable approx-

imations to the data in 2001:Q1–2004:Q3 and 2004:Q4–2011:Q4, respectively. Because this

split of the sample period captures actual pricing behavior more closely than the legal time-

line, we use these supply-side assumptions in our subsequent analyses. As a robustness

check, we also compute some of the key results under a simpler assumption (Bertrand-Nash

throughout the sample period) in Appendix C.2. A paired t test in Appendix B.3 fails to

reject H0 : pt = pmo
t (with a p value of 0.71) in the former, and fails to reject H0 : pt = pbnt

(with a p value of 0.11) in the latter.

6 Welfare Gains from Innovations

We now apply the two-period framework of section 2 to our data quarter-by-quarter, using

the demand-and-supply model from section 5 to flesh out the details. We measure the welfare

gains from innovations by hypothetically eliminating them in counterfactual simulations and

calculating the discounted sum of these quarterly differences. Sections 6.1 and 6.2 focus

on product and process innovations, respectively, whereas section 6.3 reclassifies innovations

by the technological generation of fabs, which facilitates the benefit-cost analysis of fab

investments in section 6.4.

6.1 Product Innovation

This subsection measures the welfare impact of product innovations. Recall from section 4.1

that our data allow us to distinguish between two types of product innovation: larger and

other new products. Any panels larger than the largest available in 2001:Q1 are “larger new

products,” whereas “other new products” embody new combinations of size, resolution, and

backlight type that are simply different from the initial ones.

As in Petrin (2002) and others, we measure the gains from new products by comparing

the welfare outcomes (BS, PS, and TS) in each t between two equilibria. One is the baseline

equilibrium with all available products in the data at t, J ∗
t ; the other is a counterfactual

equilibrium in which only its subset J̃t ⊂ J ∗
t is available.31 We use the actual cost profile in

the data, C∗
t , in both cases.

Table 4 reports the baseline and three counterfactual outcomes: (i) without larger new

products, (ii) without other new products, and (iii) without any new products. Results are
31J̃t and J ∗

t correspond to J0 and J1 in section 2, respectively.
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heterogeneous across markets. Panels A and B show that, in the relatively mature markets of

IT applications (notebooks and monitors), the impact of (ii) is much larger than that of (i),

because most of the popular sizes in these categories had already been introduced by 2001:Q1.

In contrast, larger new products were much more important than other new products in the

nascent TV market (Panel C)—eliminating TVs larger than 28 inches would have reduced TS

by $280.2− $68.0 = $212.2 billion (75.7%). Thus, the relative importance of different types

of product innovations depends on product life cycles. Panel D shows the overall welfare

impact on all applications. The contributions of larger new products (37.4%) and other new

products (31.8%) are broadly similar, with the total effect of $605.2−$173.3 = $431.9 billion

(71.4%). Note the individual percentage changes do not sum to the total because each of

them is computed from a separate counterfactual experiment.

Table 4: Welfare Impact of Product Innovation, 2001–2011

Welfare measure Buyer surplus Producer surplus Total surplus
Counterfactual simulation $ (% change) $ (% change) $ (% change)
A. Notebook
Baseline 94.8 (±0) 27.4 (±0) 122.2 (±0)
(i) Without larger new products 87.0 (−8.2) 25.5 (−7.0) 112.5 (−7.9)
(ii) Without other new products 57.9 (−38.9) 21.6 (−21.1) 79.5 (−34.9)
(iii) Without any new products 41.6 (−56.1) 17.3 (−36.6) 58.9 (−51.8)
B. Monitor
Baseline 149.2 (±0) 53.7 (±0) 202.8 (±0)
(i) Without larger new products 145.7 (−2.3) 52.5 (−2.2) 198.2 (−2.3)
(ii) Without other new products 65.6 (−56.0) 35.2 (−34.5) 100.8 (−50.3)
(iii) Without any new products 62.0 (−58.5) 33.9 (−36.9) 95.8 (−52.8)
C. TV
Baseline 242.9 (±0) 37.3 (±0) 280.2 (±0)
(i) Without larger new products 59.5 (−75.5) 8.5 (−77.1) 68.0 (−75.7)
(ii) Without other new products 196.3 (−19.2) 36.3 (−2.7) 232.7 (−17.0)
(iii) Without any new products 11.0 (−95.5) 7.6 (−79.8) 18.5 (−93.4)
D. All applications
Baseline 486.8 (±0) 118.4 (±0) 605.2 (±0)
(i) Without larger new products 292.2 (−40.0) 86.5 (−27.0) 378.7 (−37.4)
(ii) Without other new products 319.8 (−34.3) 93.1 (−21.4) 412.9 (−31.8)
(iii) Without any new products 114.5 (−76.5) 58.8 (−50.4) 173.3 (−71.4)

Note: All dollar values are in billion US dollars and summed over 2001:Q1–2011:Q4 without discounting.

Sensitivity to Variety Effect. These estimates account for both improvements in ob-

served product quality and the increasing number of products. Appendix C.1 shows that

the overall TS gain remains large (63.6%) even if we ignore the latter.
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6.2 Process Innovation

This subsection measures gains from process innovations by simulating counterfactual costs,

C̃t ̸= C∗
t , based on the marginal-cost function (9) in section 4.4.32 We use the same (actual)

product set J ∗
t across all simulations to isolate the impact of cost-reducing innovations.

We consider three counterfactuals. First, the productivity premium of new-generation

equipment (vintage capital), as represented by parameters θ̂g ≤ 0, where g ∈ {4, 4.5, 5, 5.5, 6, 7, 8, 8.5, 10}
is the fab’s technological generation, can be suppressed by setting θ̃g = 0 for all g. We also

set θ̃odf = 0 to mute the effect of the ODF method because it was mostly adopted as part of

5G fabs. We then recompute the no-vintage-effect equilibrium in each t under this counter-

factual cost profile, C̃(i)
t . Second, the effects of yield improvement through experimentation

(learning by doing) are captured by θ̂a ≤ 0, where a = 1, 2, . . . is the age of the fab measured

in calendar quarters. Setting θ̃a = 0 for all a nullifies this mechanism. We use the resulting

cost profile, C̃(ii)
t , to recompute the no-learning equilibrium in each t. Third, we remove all

process innovations by setting θ̃g = θ̃odf = θ̃a = 0 for all g and a, and using the associated

cost profile, C̃(iii)
t , in recomputing the no-process-innovation equilibrium in each t.

Table 5 reports similar results across markets (panels A–C). Even though both the price-

elasticity of demand and the exact number of competing products and firms are different

across applications, the underlying changes in costs do not vary much. Hence, the overall

welfare effects are broadly comparable in percentages. The industry-wide totals in panel

D show that vintage capital, learning by doing, and their combination were responsible for

13.6%, 23.3%, and 35.1% of TS, respectively. In dollar value, the total gain from process

innovations was $605.2− $392.8 = $212.4 billion.

6.3 Technological Generations of Fabs

Sections 6.1–6.2 organized welfare gains by the conceptual type of innovation. In reality,

a mix of them was embodied by each generation of fabs and arrived as a bundle. Because

investments in fabs were the most important innovation-relevant decision of the LCD firms,

this subsection reclassifies the gains based on their technological generation.

We now consider each generation of technology as a bundle of products and cost functions,

T g ≡ (J g, Cg). Not all innovations are amenable to this reclassification, however. Of the two

types of product innovation, larger new products are closely connected to new-generation
32C̃t and C∗

t correspond to C0 and C1 in section 2, respectively.
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Table 5: Welfare Impact of Process Innovation, 2001–2011

Welfare measure Buyer surplus Producer surplus Total surplus
Counterfactual simulation $ (% change) $ (% change) $ (% change)
A. Notebook
Baseline 94.8 (±0) 27.4 (±0) 122.2 (±0)
(i) No vintage-capital effects 87.1 (−8.1) 25.2 (−8.0) 112.3 (−8.1)
(ii) No learning by doing 76.9 (−18.9) 21.9 (−19.9) 98.8 (−19.1)
(iii) Neither 69.6 (−26.6) 19.8 (−27.5) 89.4 (−26.8)
B. Monitor
Baseline 149.2 (±0) 53.7 (±0) 202.8 (±0)
(i) No vintage-capital effects 129.3 (−13.3) 47.5 (−11.5) 176.8 (−12.8)
(ii) No learning by doing 110.3 (−26.1) 38.8 (−27.7) 149.1 (−26.5)
(iii) Neither 92.9 (−37.7) 33.4 (−37.7) 126.3 (−37.7)
C. TV
Baseline 242.9 (±0) 37.3 (±0) 280.2 (±0)
(i) No vintage-capital effects 203.6 (−16.2) 30.4 (−18.5) 234.0 (−16.5)
(ii) No learning by doing 187.5 (−22.8) 28.5 (−23.7) 216.0 (−22.9)
(iii) Neither 154.2 (−36.5) 22.8 (−38.9) 177.0 (−36.8)
D. All applications
Baseline 486.8 (±0) 118.4 (±0) 605.2 (±0)
(i) No vintage-capital effects 420.0 (−13.7) 103.1 (−12.9) 523.2 (−13.6)
(ii) No learning by doing 374.7 (−23.0) 89.3 (−24.6) 463.9 (−23.3)
(iii) Neither 316.7 (−35.0) 76.1 (−35.7) 392.8 (−35.1)

Note: All dollar values are in billion US dollars and summed over 2001:Q1–2011:Q4 without discounting.

fabs, whereas resolution and backlights (i.e., other new products) are not. The newest

fab generation at the beginning of our data (2001:Q1) was 4G–4.5G, which could produce

notebook and monitor panels of all sizes, but not TV panels above 40 inches. Thus, no

LCD TVs above 40 inches would have existed without post-4.5G technologies.33 Of the

two channels of process innovation, vintage capital is linked to fab generations, whereas

learning by doing is not. Thus, we treat each technological generation as a bundle of larger

new products and vintage capital effects, and simulate their absence, while keeping other

channels of innovation unchanged.

We start with the initially available fab generations, 4G–4.5G. We recompute a coun-

terfactual equilibrium in which T 4.5 ≡ (J 4.5, C4.5) is the best available technology. That

is, we eliminate all products in J ∗
t that could not have been produced with T 4.5 (i.e., any

j /∈ J 4.5). We also constrain the cost functions in C∗
t to be no more cost-competitive than

C4.5. The first row of each panel in Table 6 reports BS, PS, and TS under this setting (T 4.5)

as a baseline.

Subsequently, we simulate additional counterfactuals under T 5, T 5.5, T 6, T 8, and T 10

33This definition of “larger new products” is slightly different from the one we used in section 6.1, which
was purely based on (their absence from) the sales data in 2001:Q1. By contrast, only TVs above 40 inches
are excluded from J 4.5 and considered “larger new products” for the analysis in this subsection.
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Table 6: Welfare Impact of New-Generation Fabs, 2001–2011

Welfare measure Buyer surplus Producer surplus Total surplus
Counterfactual simulation $ (% change) $ (% change) $ (% change)
A. Notebook
4G–4.5G only (baseline) 88.9 (±0) 25.8 (±0) 114.7 (±0)
4G–5G only 93.3 (4.9) 27.0 (4.9) 120.3 (4.9)
4G–5.5G only 93.9 (5.6) 27.2 (5.4) 121.1 (5.6)
4G–6G only 94.4 (6.2) 27.3 (5.8) 121.7 (6.1)
4G–8G only 94.7 (6.5) 27.3 (6.1) 122.0 (6.4)
4G–10G 94.8 (6.6) 27.4 (6.2) 122.2 (6.5)
B. Monitor
4G–4.5G only (baseline) 132.8 (±0) 48.8 (±0) 181.7 (±0)
4G–5G only 146.5 (10.3) 53.0 (8.4) 199.5 (9.8)
4G–5.5G only 146.5 (10.3) 53.0 (8.5) 199.5 (9.8)
4G–6G only 148.1 (11.5) 53.4 (9.3) 201.5 (10.9)
4G–8G only 148.9 (12.1) 53.6 (9.7) 202.5 (11.5)
4G–10G 149.2 (12.3) 53.7 (9.9) 202.8 (11.7)
C. TV
4G–4.5G only (baseline) 172.6 (±0) 23.3 (±0) 195.8 (±0)
4G–5G only 226.1 (31.0) 33.6 (44.5) 259.7 (32.6)
4G–5.5G only 229.2 (32.8) 34.6 (48.8) 263.8 (34.7)
4G–6G only 238.7 (38.4) 36.3 (56.0) 275.0 (40.4)
4G–8G only 242.0 (40.2) 37.1 (59.4) 279.0 (42.5)
4G–10G 242.9 (40.8) 37.3 (60.5) 280.2 (43.1)
D. All applications
4G–4.5G only (baseline) 394.3 (±0) 97.9 (±0) 492.2 (±0)
4G–5G only 465.9 (18.2) 113.6 (16.1) 579.5 (17.7)
4G–5.5G only 469.6 (19.1) 114.7 (17.2) 584.3 (18.7)
4G–6G only 481.3 (22.1) 116.9 (19.5) 598.2 (21.5)
4G–8G only 485.6 (23.1) 118.0 (20.6) 603.6 (22.6)
4G–10G 486.8 (23.5) 118.4 (21.0) 605.2 (23.0)

Note: All dollar values are in billion US dollars and summed over 2001:Q1–2011:Q4 without discounting.
Rows for “4G–7G only” and “4G–8.5G only” are omitted because their outcomes are nearly identical to
“4G–8G only” and “4G–10G,” respectively. See Appendix C.2 for a robustness check with respect to the
assumption on competitive conduct.

(we skip T 7 and T 8.5 because their results are nearly identical to the adjacent ones). Newer

vintages led to visible gains, but their marginal contributions diminished in later generations.

5G fabs had the largest impact partly because their productivity improvements over 4G–4.5G

were remarkable (recall Figure 5 (A)) and partly because many popular products (45”–55”

TVs) required this vintage. The most advanced technology in our data is 10G; hence, the

difference between T 4.5 and T 10 represents the overall gains during our sample period. The

bottom row of Table 6 (panel D) reports the TS gain of $605.2 − $492.2 = $113 billion, a

23% increase from T 4.5.

The impact of new-generation fabs is much larger for TVs (panel C) than for IT applica-

tions (panels A and B). For example, 5G fabs increased TS by 32.6% for TVs, but only by

4.9% and 9.8% for notebooks and monitors, respectively. As we saw in section 6.1, larger new
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products were relatively more important in the emerging market for LCD TVs, whereas the

room for larger new products was limited in notebooks and monitors. This contrast echoes

the typical findings about product life cycles (e.g., Klepper 1996) that product innovation

matters more in earlier stages of a new market, whereas process innovation becomes essential

for firms’ survival in later stages.

6.4 Social and Private Returns on Investment

This subsection compares the benefits and costs of fab investments. We start with the

evaluation of social returns, proceed to industry-wide PS, and conclude with the analysis of

incentives at the level of individual firms.

Social Returns. Figure 9 compares the aggregate social benefits and costs. “Social ben-

efits” displays the quarterly path of the difference in TS between T 4.5 and T 10 that, when

summed, yields the aggregate reported in Table 6. “Fab costs” are the industry-wide total

costs of fab investments (see section 4.5). The line graph for “net benefits” tracks their dif-

ference in each t, showing that costs dominated benefits until around 2007, at which point

benefits started to exceed costs.

Figure 9: Social Benefits and Costs of Fab Investments (Undiscounted)

Note: “Social benefits” are the overall gains from fab investments. “Fab costs” are the industry-wide total costs

of fab investments, visualized as negative numbers in the graph. “Net benefits” are their differences.

For a more complete analysis, we must incorporate time discounting, as well as contin-
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uation values after the sample period. Table 7 shows the benefit-cost analysis with time

discount at the annual rates of 1%, 2.5%, 5%, and 10%. Regarding the post-sample period,

we assume that the incremental social benefit remains constant at its 2011:Q4 level and that

no new fab investments are made.

Table 7: Social and Industry Returns on Fab Investments

Annual discount rate 1% 2.5% 5% 10%
1. Change in buyer surplus 2,139.2 765.9 318.2 109.5
2. Change in producer surplus 373.4 136.2 58.5 21.7
3. Change in total surplus (= 1 + 2) 2,512.6 902.1 376.6 131.1
4. Fab investment cost 116.6 106.7 92.1 68.9
5. Net social value (= 3− 4) 2,396.0 795.4 284.5 62.3
6. Net producer value (= 2− 4) 256.8 29.5 −33.7 −47.2

Note: All numbers are discounted present values in billion US dollars as of 2001:Q1.

Rows 1–3 report the discounted present values (DPVs) of the changes in BS, PS, and

TS as of 2001:Q1, respectively, whereas row 4 reports the DPV of fab costs (FCs). Row 5

reports net social value (NSV), defined as the DPV of ∆TS minus the DPV of FCs. This

NSV is positive even at a relatively high discount rate of 10%. Thus, investments in 5G–10G

technologies were socially beneficial.

Industry-wide Returns. Whether these investments made positive financial returns is

a separate issue. Row 6 of Table 7 reports the industry-wide net producer value (NPV),

defined as the DPV of ∆PS minus the DPV of FCs, which corresponds to the ICI in section

2 (equation 3). NPV is positive at r = 1% and 2.5% but negative at 5% and 10%. The

industry-wide internal rate of return (IRR)—the break-even discount rate—is 3.18%. The

true return is likely to be even lower because FCs are only part of the overall costs for

developing and implementing new technologies. Our cost measure does not include R&D

expenditures or other economic costs. Hence, the industry as a whole realized only a mediocre

investment return ex post.

Individual Firms’ Returns. Despite low aggregate returns, some firms were able to

generate higher returns. Table 8 shows private gains from fab investments at the level of

individual firms. The private return is positive for LG even at r = 10%. Samsung’s return

is negative at 10% but positive at 5%. These two firms seem clear winners of the investment

race. The returns for CMO, AUO, and Sharp become positive at 2.5%, but the rest of
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the industry (CPT, HS, and others) did not make any visible returns even at 1%.34 These

individual NPVs correspond to ∆πf in equation 1.

Table 8: Private Returns Relative to Unilateral No-Investment Deviation

Annual discount rate 1% 2.5% 5% 10%
A. Change in producer surplus
Samsung 187.8 71.6 32.9 13.7
LG 286.6 104.7 45.3 17.3
CMO 78.3 27.9 11.5 3.9
AUO 77.8 29.0 12.8 5.0
Sharp 41.9 15.5 6.8 2.5
CPT 2.0 0.9 0.5 0.3
HS 2.2 1.2 0.8 0.5
Others 0.3 0.1 0.0 0.0
B. Fab investment cost
Samsung 26.9 24.6 21.1 15.7
LG 25.4 23.2 19.8 14.5
CMO 23.7 21.6 18.5 13.6
AUO 18.9 17.4 15.2 11.6
Sharp 9.2 8.4 7.2 5.2
CPT 5.1 4.8 4.4 3.6
HS 2.2 2.1 1.9 1.5
Others 5.2 4.7 4.1 3.1
C. Net producer value (= A−B)
Samsung 160.9 47.0 11.7 −1.9
LG 261.2 81.6 25.5 2.8
CMO 54.6 6.3 −7.0 −9.7
AUO 58.9 11.6 −2.4 −6.6
Sharp 32.6 7.1 −0.4 −2.7
CPT −3.1 −3.9 −3.9 −3.4
HS 0.0 −0.9 −1.1 −1.0
Others −4.9 −4.6 −4.0 −3.0
Sum of positive values 568.3 153.6 37.2 2.8
Sum of negative values −8.0 −9.4 −18.7 −28.4
Sum of all values, SII 560.3 144.1 18.5 −25.6

Note: All numbers are discounted present values in billion US dollars as of 2001:Q1.

The last row of Table 8 sums over these individual gains to compute the “sum of individual

incentives” (SII), as defined in equation 2. The SII is positive ($18.5 billion) at 5% because

the large gains at Samsung and LG more than offset the smaller losses at all other firms.

The contrast between this positive SII and the negative ICI (row 6 of Table 7)—at the

same discount rate of 5%—highlights the role of competition in promoting investments. The

negative ICI means that the industry as a whole would have been better off had the industry

not moved on to the post-4.5G technologies. However, some firms (Samsung and LG) had

sufficient strategic incentives to invest in newer-generation fabs. Because their private gains

were larger than the losses incurred by their rivals, it would have been difficult for all firms
34These firms mostly stopped investments in the middle of the sample period.

38



to agree on an industry-wide slowdown of investments.

7 Market Structure and Innovation Incentives

This section leverages the simulation framework of section 6 to further investigate the rela-

tionship between competition and investment incentives. We alter the number of firms N

and product ownership structure O to simulate the effects of mergers on TS and SII. Section

7.1 starts with the actual market structure with seven major firms and a competitive fringe,

and simulates hypothetical seven-to-six mergers. Section 7.2 considers all possible mergers

in the subsequent stages of industry consolidation, including the creation of a monopoly.

7.1 Seven-to-Six Mergers among Major Firms

This subsection measures the effects of seven-to-six mergers on static welfare and the incen-

tive to innovate. Virtually all simulated mergers reduce TS, because we do not assume any

merger-specific efficiency gains or feedback from SII.35 Hence, ∆TS and ∆SII should be

interpreted independently as measures of static welfare effects and dynamic incentive effects,

respectively. Note the mergers do not affect profits during the cartel period (until 2004:Q3)

because all major firms are acting as a monopoly, but we report results based on the entire

sample period to use the same timeline throughout the paper.

Table 9 lists 21 possible pairs that could arise from the seven major firms, in the de-

scending order of magnitude of ∆TS at r = 5%. Mergers 1–8 involve Samsung, LG, Sharp,

CMO, and AUO (i.e., top five firms by fab investments) and lead to visible reductions in

TS. Curiously, almost all of them increase SII. Such a merger might increase innovation

incentives by allowing the consolidated firm to better internalize the profit gains from its

investments, which would otherwise be competed away by a close rival. In contrast, most of

Mergers 9–21 involve CPT and/or HS, the two smallest firms, with negligible but negative

impacts on both ∆TS and ∆SII.

Whether the possibility of positive innovation effects could justify otherwise harmful

mergers is a perennial policy question in antitrust enforcement. We find that 14 of the 21

possible combinations reduce SII. Moreover, those with positive ∆SII entail larger negative

∆TS. Thus, defending mergers on this ground would seem difficult.
35Capacity constraints will become less binding for the same reason (i.e., equilibrium outputs decrease

after a merger).
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Table 9: Seven-to-Six Mergers and Their Impacts

Rank Acquirer Target Static welfare effect Innovation incentive effect
∆TS (% change) ∆SII (% change)

1 Samsung LG −15.3 (−1.0) 3.4 (17.8)
2 LG AUO −5.5 (−0.4) 1.6 (8.5)
3 Samsung CMO −4.5 (−0.3) −0.1 (−0.5)
4 Samsung AUO −4.5 (−0.3) 0.0 (0.1)
5 LG CMO −4.4 (−0.3) 0.6 (3.1)
6 Samsung Sharp −3.8 (−0.3) 2.9 (15.0)
7 CMO AUO −2.4 (−0.2) 0.2 (1.3)
8 LG Sharp −0.6 (−0.0) 0.8 (4.2)
9 Samsung CPT −0.3 (−0.0) −0.1 (−0.7)
10 LG CPT −0.3 (−0.0) −0.2 (−1.0)
11 Sharp CMO −0.3 (−0.0) −0.1 (−0.3)
12 LG HS −0.2 (−0.0) −0.1 (−0.3)
13 Sharp AUO −0.2 (−0.0) −0.0 (−0.0)
14 Samsung HS −0.2 (−0.0) −0.0 (−0.2)
15 AUO CPT −0.2 (−0.0) −0.1 (−0.3)
16 AUO HS −0.1 (−0.0) −0.0 (−0.1)
17 CMO HS −0.1 (−0.0) −0.0 (−0.0)
18 CMO CPT −0.1 (−0.0) −0.0 (−0.1)
19 CPT HS −0.0 (−0.0) −0.0 (−0.1)
20 Sharp CPT −0.0 (−0.0) −0.0 (−0.0)
21 Sharp HS −0.0 (−0.0) −0.0 (−0.0)

Note: The 21 possible mergers are sorted and ranked by the magnitude of ∆TS. The effects are expressed as
discounted present values in billion US dollars as of 2001:Q1 at r = 5%. In each row, we label the merging firm
with a larger dollar amount of fab investment as “acquirer” and the other firm as “target,” purely for the sake of
exposition. Switching these labels does not affect our simulation results. The “−0.0” entries are small negative
numbers that have been rounded.

7.2 All Possible Mergers in Industry Consolidation

This subsection extends the scope of analysis to all possible combinations of the seven major

firms. That is, we simulate not only the 21 seven-to-six mergers but also 315 six-to-five

mergers, 1,400 five-to-four mergers, and so on, including the creation of a single dominant

firm that consolidates all of them. We also simulate the acquisition of competitive fringe by

this dominant firm at the end of hypothetical industry consolidation.

Table 10 summarizes the changes due to the 4,803 mergers that we simulate, comparing

TS and SII immediately before and after each of them. As in section 7.1, ∆TS is almost

always negative (i.e., except for a few outliers among four-to-three and three-to-two mergers).

The dynamic incentive effect exhibits greater heterogeneity: some mergers substantially

increase SII, but the majority of them decrease it (the right-most column reports the fraction

of mergers with negative ∆SII). The only exception is two-to-one mergers, 95% of which

exhibit positive effects on SII, but this stage of industry consolidation is too special for any
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Table 10: Summary of All Possible Mergers and Their Effects

Merger Possible Welfare effect, ∆DPV (SW ) (%) Incentive effect, ∆SII (%)
from/to mergers Mean Stdev Min Max Mean Med Stdev Min Max Frac < 0

7 to 6 21 −0.1 0.2 −1.0 −0.0 2.1 −0.1 5.4 −1.3 18.4 0.71
(0.01) (0.02) (0.10) (0.00) (0.52) (0.07) (1.63) (0.84) (7.07) (0.06)

6 to 5 315 −0.2 0.3 −1.9 −0.0 2.1 −0.2 6.3 −9.5 36.8 0.68
(0.02) (0.03) (0.18) (0.00) (0.60) (0.11) (1.95) (3.05) (13.36) (0.05)

5 to 4 1,400 −0.3 0.6 −5.2 −0.0 1.9 −0.5 8.4 −21.3 63.2 0.68
(0.03) (0.04) (0.32) (0.00) (0.70) (0.20) (2.69) (5.86) (25.46) (0.04)

4 to 3 2,100 −0.7 1.1 −8.8 −0.0 2.0 −1.3 17.6 −25.6 216.0 0.66
(0.05) (0.05) (0.30) (0.00) (1.11) (0.41) (5.87) (6.82) (90.57) (0.03)

3 to 2 903 −1.8 2.5 −10.2 −0.0 10.0 −5.4 46.4 −28.2 225.0 0.66
(0.10) (0.08) (0.30) (0.00) (4.41) (1.48) (16.47) (7.36) (104.32) (0.02)

2 to 1 63 −9.2 2.2 −10.6 −0.5 139.1 147.2 57.9 −7.3 226.4 0.05
(0.26) (0.08) (0.31) (0.06) (51.49) (49.94) (31.93) (1.05) (113.40) (0.00)

No Others 1 −13.9 − −13.9 −13.9 −13.1 −13.1 − −13.1 −13.1 1.00
(0.46) − (0.46) (0.46) (3.00) (3.00) − (3.00) (3.00) (0.00)

Total 4,803 −0.9 1.8 −13.9 0.0 5.3 −0.9 29.2 −28.2 226.4 0.66
(0.05) (0.06) (0.46) (0.00) (2.14) (0.29) (10.69) (7.31) (112.88) (0.03)

Note: “No Others” is a merger to perfect monopoly that consolidates Others. All effects are computed as discounted
present values in billion US dollars as of 2001:Q1 at r = 5% (reported in Table 23 in Appendix C.3) and then
expressed in terms of percentage changes from the immediately preceding market structure of each merger. This
table reports the mean effects across 400 parametric bootstrap samples, with standard errors in parentheses.

broader policy implications.36 In summary, the much-debated positive incentive effect of

mergers seems technically possible, but positive outcomes are far from guaranteed (absent

merger-specific efficiencies).

Predicting the Effects of Mergers. Appendix C.4 examines the extent to which the

effects of mergers could be predicted by commonly used statistics such as ∆HHI. We find

that these statistics are useful for predicting ∆TS but not ∆SII.

8 Conclusion

Three main findings emerge from this study. First, both product and process innovations

generated massive social benefits in the LCD industry, the relative contributions of which

varied across market segments at different stages of product life cycles. Second, the sunk cost
36These 63 cases involve mergers between two super-major firms, each of which is an amalgamation of

a subset of the seven original firms. Their incentive effects are mostly positive for two reasons. First, the
elimination of duopolistic rivalry substantially increases markups and profits, as well as the incremental
profits from investments. Second, a collection of fringe firms remains in the market, which preserves the
dominant firm’s incentive to invest because there is room for business-stealing. When the dominant firm
absorbs these smaller competitors, the incentive effects become negative again (see the penultimate row of
Table 10). Therefore, we regard the two-to-one mergers here as knife-edge cases.
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of investment was so large that the realized returns were low for most firms. Nevertheless,

some firms made reasonably high private gains, which suggests that an industry-wide coor-

dination to withhold investments would have been difficult. Third, the majority of mergers

would have been unambiguously harmful (absent merger-specific efficiencies), even though

some of them could have increased the industry-wide incentive to innovate.

The unique strength of this study lies in our detailed data. To make our findings as data-

driven and transparent as possible, we deliberately kept our model simple—static demand

and supply without any explicit dynamics. The results suggest that rich data and a simple

model can shed new light on one of the most difficult and intriguing questions in IO and

innovation. Nevertheless, such a static framework has obvious limitations. One is that it

cannot allow the timing and amount of investments to change in response to the concurrent

competitive environment. Another is that it cannot allow the market structure to evolve with

endogenous mergers, innovations, and entry-exit dynamics (e.g., as in Igami and Uetake

2020). Finally, a static model cannot disentangle the relationship between collusion and

innovation, both of which were present in the first half of our sample period. We are currently

developing a dynamic game model with endogenous collusion and innovation in a follow-up

paper to address these issues.
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Online Appendix

Appendix A presents additional descriptive evidence. Appendix B reports supplementary re-

sults related to demand estimation. Appendix C contains materials related to counterfactual

simulations.

A. Supplementary Descriptive Evidence

A.1 Price-Cost Margin by Product Generation

This section compares markups between older and newer products. The goal is to investigate

the short-run dynamics of profitability across generations of products. For each product, we

define its generation based on the earliest generation of required fab equipment.

Figure 10 plots price-cost margins by product generation. Only a single line graph appears

in Panel A because 4G technology is sufficient for notebook panels of all sizes. Its cyclical

pattern mostly reflects IT demand cycles.

Figure 10: Price-Cost Margin by Product Generation

(A) Notebook (B) Monitor (C) TV

Note: Price-cost margins are averaged across products within each generation, which is defined by the earliest

generation of fab equipment that can manufacture them. Panel A plots a single line graph because 4G technology is

sufficient for notebook panels of all sizes.

Panel B features two line graphs for monitors. 4G products’ margins look similar to

notebook panels, but the overall level shifted down around 2005 and never recovered again.

By contrast, 4.5G panels commanded higher margins in their first three years.

Panel C plots five generations of TV products (4G, 4.5G, 5G, 5.5G, and 6G). 4.5G and

5.5G were niche variants that were adopted by fewer firms. A comparison between 4G, 5G,

and 6G shows that newer products initially achieved high margins, which then shrank and

gradually converged to the lower levels typical of older products, because multiple firms

started operating new-generation fabs, intensifying price competition.
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A.2 Concrete Examples of Cost Reductions

Cost Breakdown. To illustrate cost reductions with concrete examples, Table 11 shows

the cost breakdown of a 17-inch monitor panel at one of Samsung’s 4.5G plants (Chonan

L4 Phase 2), as well as total cash cost at two other fabs with 5G and 7G technologies,

respectively (Chonan L5 Phase 1 and Tangjong L7-1 Phase 1). Rows 1–3 are the costs of

materials and components for the three main processes (array, cell, and module), respectively.

Row 4 is their sum. Row 5 includes additional costs for “wasted” materials and components

due to defective outputs. Rows 6 and 7 are the costs of labor and intermediate inputs,

respectively. Row 8 is the overall unit cost—excluding depreciation—at the 4.5G fab; rows

9 and 10 report the same for the 5G and 7G fabs, respectively. These examples demonstrate

how each of the three cost drivers—(i) vintage capital, (ii) learning by doing, and (iii) input

price decrease—worked in practice.

First, the impact of new-generation equipment is evident from the comparison of cash

costs between rows 8, 9, and 10. The same 17-inch monitor could be produced in 2011:Q4

for $64.22, $58.04(−10%), and $52.04(−19%) at the 4.5G, 5G, and 7G fabs, respectively.

Table 11: Manufacturing Cost Breakdown (17-inch Monitor)

Year:Quarter 2001:Q1 2004:Q1 2007:Q1 2010:Q1 2011:Q4
(A) 4.5G fab since 2001:Q1 (Samsung’s Chonan L4 Phase 2)
1. Array material 15.60 12.30 9.70 7.78 7.06
2. Cell material 29.62 51.01 26.87 19.34 18.08
3. Module component 104.46 66.45 35.83 16.01 13.12
4. Material & component total (= 1 + 2 + 3) 149.67 129.76 72.40 43.13 38.26
5. Yielded material & component total cost (= 4÷ yield) 181.22 134.77 74.12 45.00 39.96
6. Personnel cost 32.41 17.86 18.27 24.53 20.26
7. Indirect expense 16.97 12.37 8.82 4.50 4.00
8. Cash cost (= 5 + 6 + 7) 230.59 165.00 101.21 74.03 64.22

(B) 5G fab since 2002:Q4 (Samsung’s Chonan L5 Phase 1)
9. Cash cost − 163.65 96.60 60.93 58.04

(C) 7G fab since 2005:Q2 (Samsung’s Tangjong L7-1 Phase 1)
10. Cash cost − − 96.37 57.57 52.04

Note: This table shows the breakdown of manufacturing cost in US Dollars for a 17-inch monitor (with twisted-
nematic technology, 1,280×1,024 pixels, and CCFL backlight) at three different fabs of Samsung. “Array material”
includes glass, sputtering target, and chemicals. “Cell material” includes color filter, polarizer film, liquid crystal,
and others. “Module component” includes driver integrated circuits, backlights, and printed circuit boards. “Yielded
material and component total cost” is the overall cost of material and component, including those that have to be
wasted for defective output. The input price data for the color filter is missing for 2001:Q1–2003:Q4.

Second, the combined effect of learning by doing and input price decreases manifests

itself in row 5, which tracks the cost of materials and components, including those wasted

for defective products. Their effects are multiplicative, as learning by doing reduces defects
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and wastes (i.e., input volume), whereas the reduction in input prices reduces expenditures

on all inputs regardless of whether they are wasted. In the example of Panel A, the combined

effect was a $181.22− $39.96 = $141.26 (78%) reduction between 2001:Q1 and 2011:Q4.

Third, a further decomposition is possible. Row 4 accounts for the cost of materials and

components that are used in defectless products, thereby measuring the impact of input price

decreases alone. The difference between Rows 4 and 5 reflects the cost of waste. In Panel A,

the pure input price effect was a $149.67−$38.26 = $111.41 (74%) decrease during the sample

period. The cost of defect was substantial at the beginning ($181.22−$149.67 = $31.55) but

became negligible in the end ($39.96 − $38.26 = $1.7) thanks to learning by doing—yield

improved from 0.5 to 0.93 (not reported in the table).

Input Prices. The magnitude of the input price decrease is large and deserves further

investigation. Figure 11 plots the prices of materials and components for 17-inch monitors

at 4.5G fabs. Most input prices dropped by 60%–90% during the sample period, which is

consistent with the 74% decrease in row 4 in Table 11. These improvements were possible

because many of these inputs were relatively new products from the specialty chemical and

electronic device industries, which engaged in their own innovations. The rate of price drop

is slower for sputtering targets, sheet glass, and liquid crystal than for others.37

A.3 Fab Investments

Capacity by Generation. Figure 12 tracks the evolution of fab investments by techno-

logical generation. Panel A measures each fab’s capacity by the number of input glass sheets

that it can process. This measure is proportional to the number of machines and production

lines within each fab. Meanwhile, Panel B measures capacity by the surface area of input

glass, and hence accounts for the fact that more advanced fabs use larger glass sheets.

Both panels show that a new generation of fabs appeared every year or two—5G in 2002,

6G in 2004, 7G in 2005, 8G in 2006, 8.5G in 2007, and 10G in 2009. According to panel A,

broadly similar numbers of machines went into production across all generations. However,
37We do not have any systematic information about these input markets, but our conjecture is as follows.

First, the sputtering target is made of rare metals such as indium, molybdenum, and tungsten, the prices of
which could fluctuate a lot and did not monotonically decrease over time. Second, sheet glass is manufactured
by only a handful of specialty-glass makers, including Asahi Glass, Corning, Nippon Electric Glass, and their
joint ventures. These oligopolistic suppliers might have had significant market power and retained some of
the gains from their own innovations. Third, liquid crystal is a relatively simple raw material. Its production
technology could have already matured, with limited room for further cost reductions.
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Figure 11: Material and Component Prices (17-inch Monitor, 4.5G Fab)

(A) Array Materials (B) Cell Materials (C) Module Components

Note: These graphs show the prices of materials and components that are used in three different stages of the

manufacturing process (array, cell, and module). Input prices vary across products and fab generations; we show

the prices for a 17-inch monitor panel (twisted-nematic technology, 1,280×1,024 pixels) manufactured at a 4.5G fab

(730×920 mm input glass), for which data are available for the entire sample period. In Panel A, “target” refers to

the sputtering target, “glass” is non-alkaline sheet glass, and “others” refer mostly to chemicals. In Panel B, “LC” is

liquid crystal, and “PF” is polarizer film. In Panel C, “backlight” is CCFL backlight, “PCB” is printed circuit board,

and “driver” is driver integrated circuit.

Figure 12: Fabrication Plants by Technological Generation

(A) Capacity in Number of Sheets (B) Capacity in Surface Area

Note: Panel A measures fabs’ capacities by the number of input glass sheets that can be processed per calendar

quarter. Panel B measures fabs’ capacities by the surface area of input glass per calendar quarter.

because more advanced fabs use larger input glass, the surface-area contribution from the

later generations was disproportionately larger. For example, the combined share of 7G–

10G fabs in 2011:Q4 was 42% in panel A but 72% in panel B. These fabs were also more

expensive.

Dollar Amount by Firm. Table 12 lists the total dollar amount of investments by firm.

Samsung and LG led the industry with $28.6 billion and $27.1 billion, respectively, followed

by CMO ($25.1 billion) and AUO ($19.9 billion). Their smaller rivals, CPT ($5.3 billion)
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and HS ($2.3 billion), lagged behind, as they stopped investing in the mid-2000s. Sharp

($9.8 billion) was the only Japanese firm with comparable footprints. “Others” are mostly

fringe firms in Japan, with only $5.5 billion of collective investments.

Table 12: Cost of Fab Investments by Firm, 2001–2011

Firm Location Total fab investment ($)
Samsung South Korea 28.598
LG South Korea 27.106
CMO Taiwan 25.149
AUO Taiwan 19.925
Sharp Japan 9.813
CPT Taiwan 5.289
HS Taiwan 2.296
Others Mostly Japan 5.526
Industry total − 123.703

Note: All dollar values are in billion US dollars and summed over 2001:Q1–2011:Q4 without discounting.

A.4 Pass-Through of Wholesale Prices to Retail Prices

Did the reductions in panel prices benefit the final users of LCD products? To investigate the

extent of pass-through, we manually constructed a supplementary dataset on the prices of

final goods in the US retail markets, based on product-review articles in AnandTech, CNET,

PC Magazine, and other online sources.38 We matched these retail prices with the wholesale

prices and manufacturing costs from Databases 1 and 2, which resulted in an unbalanced

panel of 14 products (application-size categories) for 2001–2011.39

We estimate the pass-through rate of global wholesale prices to US retail prices using the

following specification:

Pgy = ρ̃pgy + δg + τy + ϵgy, (14)

where Pgy is the average US retail price of category-g product in year y, pgy is the average

global wholesale price, ρ̃ is the pass-through rate (e.g., ρ̃ = 1 means 100% pass-through), δg
and τy are fixed effects for products and years, respectively, and ϵgy is the error term, which

we interpret as the measurement error in retail prices. To address potential endogeneity

problems with pgy (i.e., Pgy could affect pgy because US sales account for a substantial

fraction of global sales), we use the manufacturing cost, cgy, as an instrumental variable

(IV).
38We collected approximate retail prices for 12–13-inch, 14–15-inch, and 16–17-inch notebook PCs; 15, 17,

19, 20, 22, and 24-inch LCD monitors; and 32, 40, 46, 55, and 65-inch LCD TVs.
39The sampling frequency of the retail prices is annual. Accordingly, we aggregate the quarterly data from

Databases 1 and 2 to the industry-wide annual averages.
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Table 13: Pass-Through of Global Wholesale Prices to US Retail Prices

(1) (2) (3) (4)
Wholesale price 1.828 1.850 1.266 0.960

(0.104) (0.103) (0.090) (0.061)
Observations 124 124 124 124
First-stage F statistic 157.14 35.25 92.34 54.56
Year fixed effects No Yes No Yes
Product fixed effects No No Yes Yes

Note: An observation is a product-year, where a product is defined by an application-size combination (e.g., 15-inch
monitor). The LHS variable is the average retail price in the United States. The RHS variables include the average
wholesale price, which is instrumented by the average manufacturing cost in the 2SLS regression, as well as the dummy
variables for years and/or products in columns 2–4. Heteroskedasticity-robust standard errors are in parentheses.

Table 13 reports our estimates. Column 1 presents the baseline results without fixed

effects. A pass-through rate of 1.828 implies that a $1 decrease in wholesale prices leads to

a $1.83 decrease in retail prices. Column 2 includes year fixed effects to flexibly control for

time trends. Column 3 incorporates product fixed effects. Column 4 controls for both of

them, with a pass-through estimate of 0.96 and the 95% confidence interval of [0.841, 1.078].

These results suggest an almost complete pass-through.40 Our interpretation is that the

frequent decreases in LCD prices made these trends highly predictable and transmittable.

Furthermore, the downstream firms had strong incentives to sell LCD-based products as fast

as possible because an inventory of older, more expensive products would lead to a loss.

A.5 First-Time versus Replacement Purchases

This section explains why first-time buyers are likely to account for most of the LCD TV

purchases in our data.41 We first focus on the case of Japan (for data availability reasons

and its earlier timing of market expansion) and then consider the rest of the world.

First, the household surveys in Japan show that only 10% of the approximately 50 million

households owned LCD TVs as of 2005, and that LCD TVs were used for 10.7 years on

average.42 In 2010, 25.48 million new TVs were sold. Even if all of the five million LCD TV

owners in 2005 had decided to replace them in 2010, the fraction of replacement purchases

would have been less than 5÷ 25.48 = 19.6%. A complete replacement of five-year-old LCD
40In the recent pass-through literature, similarly high rates were found by Fabra and Reguant (2014) in

the Spanish electricity markets and by Besanko, Dubé, and Gupta (2005) in the US supermarket context.
41The underlying concern is that the installed base of LCD TVs could play the role of outside goods in

consumers’ choice. If the replacement of previously purchased devices accounts for a large fraction of new
purchases, the true value of outside goods depends on the quality of those older products.

42Central Research Services, Report 738, https://www.crs.or.jp/backno/No738/7381.htm (accessed Au-
gust 15, 2025). Cabinet Office, Government of Japan, Consumer Confidence Survey, March 2024.
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TVs in a single year is an extreme assumption only to illustrate the logical upper bound;

the actual fraction of replacement demand is estimated to be only a few percent or less,

according to industry reports.

Second, the average number of years of use was similar in other developed countries and

regions, including the United Kingdom, the United States, and continental Europe.43 The

timing of the expansion of the LCD TV market in these countries was at least a few years

later than in Japan. Thus, the size of the installed base that could have potentially been

replaced was smaller (as a fraction of new sales circa 2010) than in Japan.

Third, conventional (CRT) TVs remained mainstream in most developing countries through-

out our sample period. Hence, virtually all LCD TV sales in those markets were first-time

purchases.

In summary, first-time purchases accounted for most of the demand even in Japan, where

LCD TVs became popular much earlier than in the rest of the world. Hence, our demand

estimates seem unlikely to be biased by the lack of data on consumer holding of previously

purchased goods.

B Supplements for Demand Estimation and Its Implications

B.1 Unobserved Quality and Outside Goods

We investigate the possibility of allowing the value of outside goods to vary over time,

ui0t = γt + εi0t, and separately identifying γt from the time fixed effects, τt, which represents

the mean utility of the inside goods at t. Let ξ̃jt = ξjt + τt, and assume E[ξjt|zjt] = 0, when

zjt is a set of IVs. Pakes, Berry, and Levinsohn (1993) separately identify them by further

assuming

∀j ∈ J cont
t : E[ξ̃jt − ξ̃j,t−1] = E[(τt − τt−1) + (ξjt − ξj,t−1)] = 0, (15)

where J cont
t is the set of continuing products offered in both t and t − 1. In words, even

though ξ̃jt can change over time, its mean change is assumed to be zero.

Figure 13 plots the net appeal of the inside goods (τt − γt) and its two components (γt
and τt) under these assumptions. In the notebook and monitor markets, net appeal follows a

downward trend, suggesting that the inside goods became less attractive vis-à-vis the outside

option. Most of this downward trend is due to the increasing appeal of the outside good

(γt); τt exhibits either no trend (notebooks) or a slightly decreasing trend (monitors).
43E-scrap News, link; United States Environmental Protection Agency, link (accessed August 15, 2025).
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Figure 13: Mean Values of Inside and Outside Goods

(a) Notebook (b) Monitor (c) TV

Note: See the main text for the details of the decomposition and interpretations.

The results are qualitatively different in the TV market. The net appeal of inside goods

(τt − γt) fluctuates in a vaguely cyclical pattern without any clear trend. Its decomposition

shows that τt decreased in the first few years and never recovered afterward.

These decreasing (or non-increasing) trends in τ̂t are difficult to reconcile with the fact

that LCD panels trended to improve over time in terms of the range of possible brightness,

sharpness, response speed, viewing angle, and other physical determinants of picture quality.

One possibility is that these improvements were highly collinear with the improvements in

the observed characteristics and did not independently contribute to τt after we control for

them. Another possibility is that the identification assumptions did not hold in the current

data context, in which the definition of product is broader than the stock-keeping unit (SKU)

and other granular ones.

B.2 Comparison of Price Indices

Table 14 compares four price indices to capture “real” changes between 2001:Q1 and 2011:Q4.

First, the average unit price decreased by 100 − 38.59 = 61.41 (%) across all applications.

Second, price per surface area (m2) controls for the systematic increase in panel size and

records a much larger decrease of 87.24%. Third, we use hedonic regressions to control for

improvements in resolution and backlights as well, and find a quality-adjusted price decrease

of 89.46%. However, none of these indices incorporates the explosive growth in market size

induced by these price decreases, thereby failing to account for the overall change in economic

surplus. Our demand model allows us to construct an alternative cost-of-living index, which

suggests that the other price indices underestimate the true economic impact of innovations

by seven orders of magnitude.
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Table 14: Comparison of Price Indices in 2011:Q4

Price index Unit price Price per m2 Hedonic regression Based on demand estimate
Notebook PC 19.60192132 19.15902865 16.02415363 0.00000136
Desktop monitor 15.44295343 11.18762981 8.15032812 0.00000176
TV 49.00838143 9.39348834 7.85855845 0.00000175
All applications 38.59314853 12.76146672 10.53916361 0.00000162

Note: All price indices are normalized to 100 in the base period (2001:Q1). Unit price and price per m2 are the
unweighted average nominal prices (per unit of LCD panel and per surface area, respectively). Hedonic estimates are
based on the 2SLS regression of the natural logarithm of pjt on the time dummies, sizej , ln(ppij), and ledj , with cjt
as an IV for sizej . The demand-model-based index uses our estimates and the method by Trajtenberg (1989, section
1.4 and Table 4.9); see section 5.2.

B.3 Paired t Tests for Price Comparison

We examine the competitive conduct of firms. Because we have detailed cost data, we can

directly compare the actual price pt with three theoretical benchmarks (pmo
t , pbnt , pspt ).

Table 15: Summary Statistics for the Paired t Tests

Variable Observation Mean Standard Standard 95% confidence
error deviation interval

A. Earlier subsample (2001:Q1–2004:Q3)
Actual price, pt 15 397.57 11.53 44.67 372.84 422.31
Monopoly price, pmo

t 15 392.63 14.46 56.02 361.61 423.65
Bertrand-Nash price, pbnt 15 289.89 9.23 35.73 270.11 309.68
Social-planner price, pspt 15 254.08 9.02 34.95 234.72 273.43
Difference 1, pt − pmo

t 15 4.94 12.86 49.79 -22.63 32.52
Difference 2, pt − pbnt 15 107.68 10.40 40.31 85.36 130.00
Difference 3, pt − pspt 15 143.49 10.40 40.26 121.20 165.79

B. Later subsample (2004:Q4–2011:Q4)
Actual price, pt 29 248.71 14.96 80.57 218.06 279.35
Monopoly price, pmo

t 29 383.43 10.98 59.15 360.93 405.93
Bertrand-Nash price, pbnt 29 240.51 11.29 60.81 217.38 263.64
Social-planner price, pspt 29 205.86 10.38 55.88 184.60 227.12
Difference 1, pt − pmo

t 29 −134.73 5.39 29.00 −145.76 −123.70

Difference 2, pt − pbnt 29 8.20 4.93 26.54 −1.90 18.30
Difference 3, pt − pspt 29 42.85 5.57 30.00 31.44 54.26

Note: “Standard error” is the standard error of the (sub)sample mean, given by sd/
√
obs, where sd is the (sub)sample

standard deviation and obs is the number of observations.

Table 15 shows the summary statistics of the four prices and of the difference between pt

and each of (pmo
t , pbnt , pspt ).44 We split the sample period into the first 15 quarters (2001:Q1–

2004:Q3) and the 29 remaining quarters (2004:Q4–2011:Q4) because the benchmark price

closest to the data switches from pmo
t to pbnt between 2004:Q3 and 2004:Q4.

44We focus on the average price for all products pt, instead of product-specific ones pjt, for two reasons.
First, the LCD cartel operated on an industry-wide scale rather than at the product level. Second, product-
specific prices could vary wildly for idiosyncratic reasons and tend to reject any null hypothesis of zero mean
difference, defeating the purpose of price comparisons.
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Table 16 reports the results of the paired t tests. Each row examines the difference

between pt and one of the three benchmarks, and tests the null hypotheses H0 of zero

difference against three alternative hypotheses Ha that the mean of the difference is (i) less

than zero, (ii) not equal to zero, and (iii) greater than zero. Panel A suggests that the actual

price is more consistent with monopoly pricing than the other two in this subperiod. Panel

B favors the assumption of Bertrand-Nash pricing in the later subperiod.

Table 16: Paired t Tests of Price Comparison

Variable t Degree of p value of H0: mean(diff) = 0
statistic freedom Ha: mean(diff) < 0 Ha: mean(diff) ̸= 0 Ha: mean(diff) > 0

A. Earlier subsample (2001:Q1–2004:Q3)
Difference 1, pt − pmo

t 0.3843 14 0.6467 0.7066 0.3533
Difference 2, pt − pbnt 10.3458 14 1.0000 0.0000 0.0000
Difference 3, pt − pspt 13.8040 14 1.0000 0.0000 0.0000

B. Later subsample (2004:Q4–2011:Q4)
Difference 1, pt − pmo

t −25.0182 28 0.0000 0.0000 1.0000
Difference 2, pt − pbnt 1.6635 28 0.9463 0.1074 0.0537
Difference 3, pt − pspt 7.6922 28 1.0000 0.0000 0.0000

B.4 Supplementary Tables Related to Demand Estimation

Tables 17 and 18 report the first-stage regressions of prices and within-nest market shares,

respectively. Tables 19 and 20 report alternative demand estimates when the market size

Mt (the number of potential buyers) is decreased and increased by 50%, respectively.
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Table 17: First-Stage Regression: Prices

Application Notebook PC Desktop monitor TV
Estimate Coeff. Std. err. Coeff. Std. err. Coeff. Std. err.
Marginal cost 1.177 (0.034) 2.838 (0.058) 1.565 (0.020)
Cartel participation 3.866 (1.357) −50.359 (7.833) −64.246 (17.659)
Diff IV resolution (own) 2.547 (0.628) −36.358 (3.643) −0.955 (5.889)
Diff IV LED (own) 1.908 (0.663) 4.495 (7.355) 1.756 (5.866)
Diff IV size (own) 0.339 (0.082) 4.739 (0.378) −1.039 (0.256)
Diff IV resolution×LED (own) −0.729 (0.116) −2.225 (0.833) 4.647 (1.595)
Diff IV resolution×size (own) 0.065 (0.037) −0.095 (0.157) −0.076 (0.151)
Diff IV LED×size (own) 0.027 (0.005) 0.073 (0.011) −0.021 (0.004)
Diff IV resolution (others) 2.012 (0.222) 28.056 (2.323) 1.718 (1.210)
Diff IV LED (others) −0.299 (0.157) −2.257 (1.506) 0.639 (1.221)
Diff IV size (others) 0.387 (0.023) −0.498 (0.103) 0.319 (0.053)
Diff IV resolution×LED (others) 0.157 (0.035) 0.315 (0.332) 1.723 (0.413)
Diff IV resolution×size (others) −0.005 (0.007) 0.015 (0.031) 0.059 (0.031)
Diff IV LED×size (others) 0.030 (0.002) 0.013 (0.003) 0.008 (0.001)
Resolution 78.945 (2.464) 328.025 (22.193) 73.894 (19.791)
LED −5.810 (0.957) −6.448 (13.441) −6.561 (11.476)
Size = 12” −22.233 (2.581)
Size = 13” −11.647 (3.457)
Size = 14” −23.496 (3.777) 14.140 (37.090)
Size = 15” −8.164 (3.979)
Size = 15.4” −11.675 (3.881)
Size = 16” −16.130 (3.939) 48.512 (13.487) −30.743 (33.723)
Size = 17” −20.738 (3.656)
Size = 18” −43.311 (3.860) 44.773 (14.932) −58.971 (35.120)
Size = 20” 58.558 (17.011) −66.719 (34.963)
Size = 22” 63.525 (18.478) −71.484 (36.189)
Size = 24” −8.081 (19.289) −48.651 (37.088)
Size = 26” −50.529 (38.027)
Size = 27” −94.071 (17.916)
Size = 28” 46.299 (46.536)
Size = 30” −71.227 (43.427)
Size = 32” −107.643 (40.456)
Size = 40” −150.908 (42.097)
Size = 45” −200.250 (44.011)
Size = 50” −243.186 (44.092)
Size = 55” −266.566 (46.693)
Size = 60” 174.121 (52.807)
Size = 65” −26.755 (61.576)
Firm = Samsung 11.378 (1.103) 29.022 (6.227) 86.793 (10.533)
Firm = LG 8.004 (1.063) 16.673 (6.616) 73.560 (9.958)
Firm = CMO −1.319 (1.198) −10.194 (6.379) −34.813 (10.486)
Firm = AUO − − − − − −
Firm = Sharp −5.392 (1.477) 28.903 (10.500) 11.105 (11.457)
Firm = CPT −8.853 (1.638) −12.364 (7.769) −6.511 (16.408)
Firm = HS −7.081 (1.855) 5.517 (8.287) 28.275 (26.859)
Firm = Others −8.734 (1.321) −19.836 (6.443) −62.218 (12.453)
Constant −273.142 (11.073) −1,707.820 (98.969) −92.743 (102.896)
Time dummies Yes Yes Yes
Adjusted R2 0.946 0.898 0.921
F statistic 986.808 414.860 508.219
Observations 4,140 3,374 3,582

A-11



Table 18: First-Stage Regression: Within-Nest Shares

Application Notebook PC Desktop monitor TV
Estimate Coeff. Std. err. Coeff. Std. err. Coeff. Std. err.
Marginal cost 0.015 (0.003) 0.001 (0.001) 0.001 (0.000)
Cartel participation −0.302 (0.113) 0.783 (0.152) 0.046 (0.149)
Diff IV resolution (own) −0.169 (0.052) 0.305 (0.071) −0.177 (0.050)
Diff IV LED (own) −0.089 (0.055) 0.233 (0.142) 0.037 (0.050)
Diff IV size (own) 0.027 (0.007) 0.019 (0.007) −0.003 (0.002)
Diff IV resolution×LED (own) −0.058 (0.010) −0.006 (0.016) −0.001 (0.013)
Diff IV resolution×size (own) 0.002 (0.003) −0.000 (0.003) −0.001 (0.001)
Diff IV LED×size (own) 0.000 (0.000) 0.000 (0.000) −0.000 (0.000)
Diff IV resolution (others) −0.049 (0.018) −0.300 (0.045) −0.061 (0.010)
Diff IV LED (others) 0.023 (0.013) 0.040 (0.029) 0.004 (0.010)
Diff IV size (others) −0.018 (0.002) −0.009 (0.002) −0.003 (0.000)
Diff IV resolution×LED (others) −0.022 (0.003) −0.062 (0.006) −0.040 (0.003)
Diff IV resolution×size (others) −0.002 (0.001) 0.002 (0.001) 0.001 (0.000)
Diff IV LED×size (others) −0.000 (0.000) 0.000 (0.000) −0.000 (0.000)
Resolution −3.569 (0.204) −0.644 (0.430) −1.883 (0.167)
LED −0.176 (0.079) 1.096 (0.260) 0.118 (0.097)
Size = 12” −1.948 (0.214)
Size = 13” −2.248 (0.287)
Size = 14” −3.421 (0.313) −1.164 (0.314)
Size = 15” −3.451 (0.330)
Size = 15.4” −2.973 (0.322)
Size = 16” −3.347 (0.327) −1.342 (0.261) −1.713 (0.285)
Size = 17” −2.965 (0.303)
Size = 18” −1.120 (0.320) −1.747 (0.289) −1.315 (0.297)
Size = 20” −1.804 (0.329) −2.833 (0.296)
Size = 22” −1.186 (0.358) −2.402 (0.306)
Size = 24” −1.133 (0.373) −1.978 (0.313)
Size = 26” −3.176 (0.321)
Size = 27” −3.014 (0.347)
Size = 28” −1.312 (0.393)
Size = 30” −2.946 (0.367)
Size = 32” −3.588 (0.342)
Size = 40” −4.279 (0.356)
Size = 45” −3.988 (0.372)
Size = 50” −4.436 (0.373)
Size = 55” −5.187 (0.395)
Size = 60” −4.197 (0.446)
Size = 65” −5.429 (0.520)
Firm = Samsung 0.410 (0.092) −0.282 (0.121) 0.462 (0.089)
Firm = LG 0.452 (0.088) 0.112 (0.128) 0.423 (0.084)
Firm = CMO −0.494 (0.099) −0.503 (0.123) 0.141 (0.089)
Firm = AUO − − − − − −
Firm = Sharp −0.650 (0.123) −1.778 (0.203) 0.131 (0.097)
Firm = CPT −1.143 (0.136) −0.320 (0.150) −1.084 (0.139)
Firm = HS −1.674 (0.154) −0.545 (0.160) −1.872 (0.227)
Firm = Others −0.849 (0.110) −1.777 (0.125) −0.971 (0.105)
Constant 13.978 (0.919) 1.713 (1.916) 8.241 (0.870)
Time dummies Yes Yes Yes
Adjusted R2 0.325 0.273 0.329
F Statistic 27.963 18.566 22.387
Observations 4,140 3,374 3,582
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Table 19: Demand Estimates with 50% Reduction in Mt

Application Notebook PC Desktop monitor TV
Estimate Coeff. Std. err. Coeff. Std. err. Coeff. Std. err.
Price (α) −108.359 14.218 −91.510 4.017 −34.831 2.096
Size nests (ρ) 0.795 0.026 0.759 0.026 0.888 0.027
Size = 12” (β12) 1.927 0.062 − − − −
Size = 13” (β13) 2.083 0.074 − − − −
Size = 14” (β14) 3.356 0.083 − − 2.099 0.181
Size = 15” (β15) 3.071 0.095 − − − −
Size = 15.4” (β15.4) 3.004 0.089 − − − −
Size = 16” (β16) 3.417 0.112 4.320 0.089 2.959 0.160
Size = 17” (β17) 2.516 0.085 − − − −
Size = 18” (β18) −0.006 0.132 5.303 0.109 2.111 0.180
Size = 20” (β20) − − 6.013 0.134 4.475 0.182
Size = 22” (β22) − − 5.420 0.138 3.770 0.196
Size = 24” (β24) − − 5.151 0.136 3.387 0.184
Size = 26” (β26) − − − − 4.888 0.198
Size = 27” (β27) − − 4.287 0.157 − −
Size = 28” (β28) − − − − 3.493 0.268
Size = 30” (β30) − − − − 4.823 0.253
Size = 32” (β32) − − − − 6.639 0.212
Size = 40” (β40) − − − − 6.389 0.230
Size = 45” (β45) − − − − 6.109 0.234
Size = 50” (β50) − − − − 6.158 0.251
Size = 55” (β55) − − − − 6.211 0.283
Size = 60” (β60) − − − − 4.883 0.349
Size ≥ 65” (β65) − − − − 5.755 0.381
Resolution (βr) 1.067 0.139 1.742 0.161 0.237 0.059
LED (βb) 0.129 0.035 −0.108 0.047 0.365 0.034
Firm = Samsung −0.038 0.046 0.014 0.043 0.104 0.039
Firm = LG −0.082 0.048 0.118 0.039 0.062 0.034
Firm = CMO −0.129 0.053 −0.177 0.044 −0.051 0.041
Firm = AUO − − − − − −
Firm = Sharp −0.393 0.073 −0.218 0.073 −0.046 0.036
Firm = CPT −0.046 0.062 −0.146 0.052 −0.093 0.064
Firm = HS −0.167 0.072 −0.111 0.057 −0.464 0.103
Firm = Others −0.234 0.045 −0.157 0.053 −0.160 0.045
Constant −9.292 0.495 −13.386 0.670 −10.612 0.356
Time dummies Yes Yes Yes
Own elasticity −6.28 −6.04 −8.73
Observations 4,140 3,374 3,582
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Table 20: Demand Estimates with 50% Increase in Mt

Application Notebook PC Desktop monitor TV
Estimate Coeff. Std. err. Coeff. Std. err. Coeff. Std. err.
Price (α) −110.290 14.989 −93.709 4.317 −35.029 2.116
Size nests (ρ) 0.795 0.026 0.752 0.026 0.889 0.027
Size = 12” (β12) 1.927 0.063 − − − −
Size = 13” (β13) 2.082 0.074 − − − −
Size = 14” (β14) 3.354 0.083 − − 2.102 0.181
Size = 15” (β15) 3.066 0.094 − − − −
Size = 15.4” (β15.4) 3.001 0.089 − − − −
Size = 16” (β16) 3.415 0.112 4.307 0.090 2.965 0.160
Size = 17” (β17) 2.513 0.084 − − − −
Size = 18” (β18) −0.011 0.133 5.284 0.110 2.115 0.180
Size = 20” (β20) − − 5.984 0.135 4.482 0.182
Size = 22” (β22) − − 5.396 0.139 3.778 0.196
Size = 24” (β24) − − 5.126 0.137 3.392 0.184
Size = 26” (β26) − − − − 4.891 0.198
Size = 27” (β27) − − 4.264 0.158 − −
Size = 28” (β28) − − − − 3.496 0.268
Size = 30” (β30) − − − − 4.830 0.253
Size = 32” (β32) − − − − 6.637 0.211
Size = 40” (β40) − − − − 6.382 0.229
Size = 45” (β45) − − − − 6.098 0.233
Size = 50” (β50) − − − − 6.140 0.249
Size = 55” (β55) − − − − 6.181 0.280
Size = 60” (β60) − − − − 4.830 0.344
Size ≥ 65” (β65) − − − − 5.703 0.376
Resolution (βr) 1.060 0.138 1.729 0.163 0.236 0.059
LED (βb) 0.129 0.035 −0.115 0.047 0.360 0.034
Firm = Samsung −0.039 0.046 0.012 0.044 0.103 0.039
Firm = LG −0.082 0.048 0.117 0.039 0.062 0.034
Firm = CMO −0.130 0.053 −0.181 0.045 −0.052 0.041
Firm = AUO − − − − − −
Firm = Sharp −0.393 0.073 −0.231 0.074 −0.046 0.036
Firm = CPT −0.046 0.062 −0.151 0.052 −0.091 0.064
Firm = HS −0.167 0.072 −0.114 0.058 −0.461 0.103
Firm = Others −0.234 0.045 −0.168 0.054 −0.159 0.045
Constant −10.366 0.495 −14.389 0.679 −11.698 0.356
Time dummies Yes Yes Yes
Own elasticity −6.25 −5.86 −8.75
Observations 4,140 3,374 3,582
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C Supplements Related to Counterfactual Simulations

C.1 Gains from Quality versus Variety

All discrete choice models of demand with individual taste for products (i.e., εijt in equation

10) share a common property that the addition of any product will mechanically increase

BS regardless of its characteristics. In this sense, the gains from new products in section 6.1

represent an upper bound that incorporates the gains from both better products (quality

effect) and more products (variety effect). We assess the magnitude of this issue by computing

a lower bound that eliminates the variety effect.45

Table 21 reports additional counterfactual results in which we keep the number (or com-

position) of products constant across simulations. First, our change-composition counterfac-

tual keeps the number of products constant (i.e., same as in the data) but removes the larger

new products from the buyers’ choice set by replacing them with a random sample of the

initial products.46 This simulation separately identifies the quality effect, which accounts for

(i) 25.1% points of the 35.0% total gains from larger new products, (ii) 25.3% points of the

34.4% total gains from other new products, and (iii) 62.4% points of the 70.6% total gains

from all new products. Hence, most of the total gains can be attributed to the quality effect.

Second, our change-number counterfactual reduces the number of products as in our

original counterfactuals, but keeps the composition of products similar to the data. More

specifically, panels (i), (ii), and (iii) of Table 21 reuse the counterfactual histories of the

reduced number of products in simulations (i), (ii), and (iii) in Table 4 in section 6.1, re-

spectively. Because the actual choice set in each t > 2001:Q1 contains more products than

in these counterfactual paths, we randomly resample a subset of these actual products and

report the mean TS across 100 resampled histories. These simulations identify the variety

effect, which accounts for (i) 11.6%, (ii) 21.6%, and (iii) 51.4%, respectively.

Third, our change-both counterfactual alters both the number and composition of prod-

ucts, which is the same design as the original counterfactuals in section 6.1 and incorporates

both the quality and variety effects. Both of them are quantitatively important, according

to our results. In terms of relative magnitude, the quality effect is larger than the variety

effect and represents more than half of the total effect in all three panels of Table 21.

We have also considered alternative approaches to mitigate the variety effect, including
45Similar methods have been used in the recent IO literature, including Dafny, Ho, and Varela (2013),

Ciliberto, Moschini, and Perry (2019), and Grieco, Murry, and Yurukoglu (2024).
46We randomly resample them 100 times in each period, and report their mean TS.
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Table 21: Separating the Quality Effect and the Variety Effect of Product Innovations

Setting Number Composition Total surplus
of of $ (% change

products products from baseline)
Baseline Actual Actual 605.2 (0.0)
(i) Without larger new products
Change composition Actual Without larger new products 443.7 (−26.7)
Change number CF (i) Actual 560.0 (−7.5)
Change both CF (i) Without larger new products 378.7 (−37.4)

(ii) Without other new products
Change composition Actual Without other new products 451.8 (−25.4)
Change number CF (ii) Actual 511.0 (−15.6)
Change both CF (ii) Without other new products 412.9 (−31.8)

(iii) Without any new products
Change composition Actual Without any new products 220.4 (−63.6)
Change number CF (iii) Actual 327.0 (−46.0)
Change both CF (iii) Without any new products 173.3 (−71.4)

Note: CF (i), CF (ii), and CF (iii) in the “number of products” column correspond to the counterfactual
settings (i), (ii), and (i) + (ii) in Table 4, respectively. All dollar values are in billion US dollars and summed
over 2001:Q1–2011:Q4 without discounting.

the adjustment proposed by Ackerberg and Rysman (2005) and the pure characteristics

model proposed by Berry and Pakes (2007). However, neither of them is particularly useful

in our setting. Our baseline specification of demand already includes the time fixed effects,

which makes the additional term in Ackerberg and Rysman (2005) redundant. The pure

characteristics model is known to produce implausibly high estimates of the price-elasticity

of demand, and its estimation algorithm faces severe computational limitations.47

C.2 Impact of New Technologies under Always-Bertrand Assumption

We report the gains from fab generations under the alternative conduct assumption of

Bertrand competition throughout the sample period (Table 22). Results are similar to the

baseline estimates in section 6.3.

C.3 Effects of Mergers in Dollar Terms

Table 23 reports the summary statistics of the effects of the 4,803 mergers that we simulate

in section 7.2 in terms of dollar values.
47See Berry and Pakes (2007, Table 6), Song (2015, Table 5), and Song’s (2006) computational note.
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Table 22: Welfare Impact of New-Generation Fabs under Always-Bertrand Assumption

Welfare measure Consumer surplus Producer surplus Social welfare
Counterfactual simulation $ (% change) $ (% change) $ (% change)
A. Notebook
4G–4.5G only (baseline) 100.1 (±0) 21.3 (±0) 121.4 (±0)
4G–5G only 104.8 (4.7) 22.4 (5.4) 127.2 (4.8)
4G–5.5G only 105.4 (5.4) 22.6 (6.0) 128.0 (5.5)
4G–6G only 105.9 (5.9) 22.7 (6.4) 128.6 (6.0)
4G–8G only 106.2 (6.1) 22.7 (6.8) 129.0 (6.3)
4G–10G 106.3 (6.2) 22.8 (7.0) 129.1 (6.4)
B. Monitor
4G–4.5G only (baseline) 151.5 (±0) 41.7 (±0) 193.2 (±0)
4G–5G only 166.6 (10.0) 45.4 (8.7) 212.0 (9.7)
4G–5.5G only 166.6 (10.0) 45.4 (8.7) 212.0 (9.7)
4G–6G only 168.2 (11.1) 45.8 (9.7) 214.0 (10.8)
4G–8G only 169.0 (11.6) 46.0 (10.3) 215.0 (11.3)
4G–10G 169.3 (11.7) 46.1 (10.4) 215.3 (11.5)
C. TV
4G–4.5G only (baseline) 175.1 (±0) 22.2 (±0) 197.2 (±0)
4G–5G only 228.8 (30.7) 32.4 (46.3) 261.3 (32.5)
4G–5.5G only 231.9 (32.4) 33.4 (50.9) 265.3 (34.5)
4G–6G only 241.5 (37.9) 35.1 (58.3) 276.6 (40.2)
4G–8G only 244.7 (39.8) 35.9 (61.9) 280.6 (42.3)
4G–10G 245.6 (40.3) 36.1 (63.1) 281.8 (42.9)
D. All applications
4G–4.5G only (baseline) 426.6 (±0) 85.2 (±0) 511.8 (±0)
4G–5G only 500.2 (17.3) 100.2 (17.7) 600.5 (17.3)
4G–5.5G only 503.9 (18.1) 101.4 (19.0) 605.3 (18.3)
4G–6G only 515.6 (20.9) 103.5 (21.6) 619.2 (21.0)
4G–8G only 519.9 (21.9) 104.6 (22.8) 624.5 (22.0)
4G–10G 521.2 (22.2) 105.0 (23.3) 626.2 (22.4)

Note: All dollar values are in billion US dollars and summed over 2001:Q1–2011:Q4 without discounting. Rows for
“4G–7G only” and “4G–8.5G only” are omitted because their outcomes are nearly identical to “4G–8G only” and
“4G–10G,” respectively.

C.4 Predicting the Outcomes of Merger Simulations

Table 24 reports regression results in which the left-hand-side (LHS) variable is ∆SII. Panel

A uses the full sample of 4,803 mergers and shows that ∆SII is positively correlated with

post-merger HHI, the change in HHI (∆HHI), post-merger IHHI (the HHI of the dollar

amount of fab investments), the change in IHHI (∆IHHI), and upward pricing pressure (UPP)

in columns (1)–(5), respectively; it is negatively correlated with the change in the DPV of

TS, ∆DPV (TS), in column (6). Panel B excludes outliers and focuses on a subsample

consisting of 4,533 mergers that are densely collocated in the two-dimensional plane defined

by ∆SII and ∆DPV (TS)—specifically, the subsample with ∆DPV (TS) ∈ [−3%, 0%].

We find ∆SII is negatively correlated with HHI, IHHI, and ∆DPV (TS), but positively

correlated with ∆HHI, ∆IHHI, and UPP.
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Table 23: Summary of All Possible Mergers and Their Effects (in Dollar Values)

Merger Possible Welfare effect, ∆DPV (SW ) Incentive effect, ∆SII
from/to mergers Mean Stdev Min Max Mean Med Stdev Min Max Frac < 0

7 to 6 21 −2.1 3.7 −15.6 −0.0 0.4 −0.0 1.0 −0.2 3.4 0.71
(0.19) (0.35) (1.69) (0.00) (0.05) (0.01) (0.19) (0.13) (0.98) (0.06)

6 to 5 315 −3.2 5.2 −29.5 −0.0 0.4 −0.0 1.2 −1.8 7.1 0.68
(0.27) (0.45) (2.90) (0.00) (0.07) (0.02) (0.25) (0.38) (1.82) (0.05)

5 to 4 1,400 −5.2 8.5 −80.0 −0.0 0.4 −0.1 1.6 −4.1 10.8 0.68
(0.43) (0.64) (5.73) (0.00) (0.10) (0.03) (0.34) (0.61) (2.54) (0.04)

4 to 3 2,100 −10.2 16.9 −135.2 −0.0 0.4 −0.3 3.3 −4.9 32.5 0.66
(0.76) (1.01) (6.60) (0.00) (0.18) (0.06) (0.64) (0.65) (6.03) (0.03)

3 to 2 903 −27.9 37.9 −155.7 −0.0 1.8 −1.1 8.3 −5.3 32.3 0.66
(1.63) (2.00) (7.84) (0.00) (0.56) (0.20) (1.56) (0.65) (6.03) (0.02)

2 to 1 63 −138.6 34.6 −162.6 −7.5 24.0 26.1 7.1 −3.5 30.4 0.05
(7.02) (1.87) (8.20) (0.87) (4.92) (5.37) (1.36) (0.21) (6.10) (0.00)

No Others 1 −190.5 − −190.5 −190.5 −5.8 −5.8 − −5.8 −5.8 1.00
(13.14) − (13.14) (13.14) (0.97) (0.97) − (0.97) (0.97) (0.00)

Total 4,803 −13.3 26.7 −190.5 0.0 0.9 −0.2 5.1 −5.8 32.5 0.66
(0.83) (1.39) (13.14) (0.00) (0.27) (0.04) (1.00) (0.85) (6.03) (0.03)

Note: “No Others” is a merger to perfect monopoly that consolidates Others. All effects are computed as discounted
present values in billion US dollars as of 2001:Q1 at r = 5%. Standard errors from 400 parametric bootstrap samples
are in parentheses.

In Table 25, the LHS variable is ∆DPV (TS). The same set of regressors performs well

in terms of fit—∆HHI alone achieves the R2 of 0.828 (panel B, column 2). Almost all of the

coefficient estimates are negative and readily interpretable: greater concentration and/or

market power reduces welfare.48 Thus, the static-welfare effect of mergers is simpler and

easier to predict than their innovation-incentive effect.

48The only two exceptions arise in the all-regressor specification of column 6 (panels A and B), which
could be the manifestation of collinearity issues. Note that the predictive performances are impressive but
not surprising if one is familiar with the recent literature on merger control. The superiority of ∆HHI to
HHI confirms the main message of Nocke and Whinston (2022) that ∆HHI (rather than HHI) is closely
related to the static welfare impact of mergers. Likewise, column 5 of Table 25 demonstrates similarly good
performance of UPP, thus empirically validating the simulation results of Miller, Remer, Ryan, and Sheu
(2017).
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Table 24: Predictors of the Effect of Mergers on Innovation Incentives

Specification (1) (2) (3) (4) (5) (6) (7)
A. Including Outliers
Post-merger HHI 1.635 −0.429

(0.040) (0.086)
Change in HHI 2.791 −3.144

(0.065) (0.153)
Post-merger IHHI 1.145 −0.111

(0.025) (0.060)
Change in IHHI 1.864 −1.079

(0.037) (0.073)
UPP 4.659 4.888

(0.090) (0.218)
∆DPV (TS) −14.492 −20.851

(0.116) (0.179)
Constant −57.421 −13.649 −42.074 −13.949 −17.606 −7.333 16.649

(1.562) (0.567) (1.074) (0.511) (0.559) (0.228) (1.227)
Number of observations 4,803 4,803 4,803 4,803 4,803 4,803 4,803
R2 0.262 0.279 0.312 0.348 0.356 0.765 0.859
Adjusted R2 0.262 0.279 0.312 0.347 0.356 0.765 0.859
B. Excluding Outliers
Post-merger HHI −0.044 −0.291

(0.022) (0.043)
Change in HHI 0.462 −4.086

(0.033) (0.083)
Post-merger IHHI −0.046 −0.043

(0.015) (0.031)
Change in IHHI 0.245 −1.243

(0.022) (0.040)
UPP 1.220 5.933

(0.048) (0.136)
∆DPV (TS) −8.016 −23.754

(0.226) (0.379)
Constant 1.386 −3.034 1.559 −2.414 −5.582 −4.125 10.540

(0.824) (0.253) (0.603) (0.249) (0.257) (0.179) (0.644)
Number of observations 4,533 4,533 4,533 4,533 4,533 4,533 4,533
R2 0.001 0.042 0.002 0.027 0.126 0.217 0.757
Adjusted R2 0.001 0.041 0.002 0.027 0.126 0.217 0.757

Note: The dependent variable is ∆SII in percentage change from the pre-merger market structure. All results are
based on OLS. Standard errors are in parentheses. The HHI, ∆HHI, IHHI, and ∆IHHI are expressed in the range
between 0 and 100 (instead of the more conventional 0–10,000 scale) to ensure the decimal alignment of coefficient
estimates. See the main text for the definition of the outliers.
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Table 25: Predictors of the Effect of Mergers on Total Surplus

Specification (1) (2) (3) (4) (5) (6)
A. Including Outliers
Post-merger HHI −0.145 −0.022

(0.002) (0.007)
Change in HHI −0.247 0.169

(0.003) (0.012)
Post-merger IHHI −0.098 −0.035

(0.001) (0.005)
Change in IHHI −0.157 −0.070

(0.002) (0.006)
UPP −0.378 −0.322

(0.004) (0.017)
Constant 4.681 0.802 3.185 0.754 0.988 2.565

(0.072) (0.026) (0.048) (0.022) (0.025) (0.092)
Number of observations 4,803 4,803 4,803 4,803 4,803 4,803
R2 0.564 0.598 0.628 0.681 0.644 0.749
Adjusted R2 0.564 0.598 0.628 0.681 0.644 0.749
B. Excluding Outliers
Post-merger HHI −0.053 −0.011

(0.001) (0.002)
Change in HHI −0.120 0.028

(0.001) (0.003)
Post-merger IHHI −0.037 −0.000

(0.001) (0.001)
Change in IHHI −0.076 −0.009

(0.001) (0.002)
UPP −0.187 −0.194

(0.001) (0.004)
Constant 1.474 0.241 0.946 0.191 0.335 0.698

(0.038) (0.006) (0.027) (0.007) (0.006) (0.023)
Number of observations 4,533 4,533 4,533 4,533 4,533 4,533
R2 0.383 0.828 0.395 0.777 0.877 0.890
Adjusted R2 0.383 0.828 0.395 0.777 0.877 0.890

Note: The dependent variable is ∆DPV (TS) in percentage change from the pre-merger market structure. All
results are based on OLS. Standard errors are in parentheses. The HHI, ∆HHI, IHHI, and ∆IHHI are expressed
in the range between 0 and 100 (instead of the more conventional 0–10,000 scale) to ensure the decimal alignment
of coefficient estimates. See the main text for the definition of the outliers.
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